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Abstract—Artificial Intelligence (AI) and Machine Learning
(ML) are becoming common in our daily lives. The AI-driven
processes significantly affect us as individuals and as a society,
spanning across ethical dimensions like discrimination, misin-
formation, and fraud. Several of these AI & ML approaches
rely on Knowledge Graph (KG) data. Due to the large volume
and complexity of today’s KG-driven approaches, enormous
resources are spent to utilize the complex AI approaches. Efficient
usage of the resources like hardware and power consumption
is essential for sustainable KG-based ML technologies. This
paper introduces the ethical and sustainability considerations,
challenges, and optimizations in the context of KG-based ML.
We have grouped the ethical and sustainability aspects according
to the typical Research & Development (R&D) lifecycle: an
initial investigation of the AI approach’s responsibility dimen-
sions; technical system setup; central KG data analytics and
curating; model selection, training, and evaluation; and final
technology deployment. We also describe significant trade-offs
and alternative options for dedicated scenarios enriched through
existing and reported ethical and sustainability issues in AI-
driven approaches and research. These include, e.g., efficient
hardware usage guidelines; or the trade-off between transparency
and accessibility compared to the risk of manipulability and
privacy-related data disclosure. In addition, we propose how
biased data and barely explainable AI can result in discriminating
ML predictions. This work supports researchers and developers
in reflecting, evaluating, and optimizing dedicated KG-based ML
approaches in the dimensions of ethics and sustainability.

Index Terms—Semantic Processing, Knowledge Graphs, Ma-
chine Learning, AI Ethics, Sustainable Machine Learning, Ex-
plainable AI, RDF

I. INTRODUCTION

Artificial Intelligence (AI) implemented through Machine
Learning (ML) driven processes increasingly impacts our daily
lives. Those reach from how we: buy products, consume
streaming content, preselect CVs in job applications, and
interact with customer service over chatbots. A significant
share of these scenarios relies on Knowledge Graph (KG)
data [1]. The Semantic Web [2] vision describes the joint
effort to integrate various internet data sources into a relation-
centric linked data structure. Out of this concept, several open
KGs have emerged (DBpedia [3], YAGO [4], Freebase [5],
Wikidata [6]) as well as big tech companies implemented
enterprise KGs for their products (Meta, Google, Linked-
In, eBay, IBM) [1]. The KG-based ML models have already
substantially impacted individuals and overall society. Based

on already reported problems and challenges with AI-driven
approaches [7]–[12], we see a need to investigate KG-based
ML. Due to the complexity of the applied ML models and
the enormous underlying training data, the investigation and
optimization of respective processes are challenging. So we
need best practice guidelines to offer Data Scientists and ML
Engineers a starting point for improved and more holistic
KG ML R&D. Within this work, we provide a set of novel
contributions:

• Introduction of a novel Ethical AI perspective on KG-
based ML.

• Sustainability considerations on the KG-based ML R&D
lifecycle.

• Presentation of interwoven ethical and sustainability di-
mensions along the Downstream Pipeline, including Re-
sponsible AI Approach, Technical Setup, Data Insights,
ML, Training & Evaluation, and finally, Deployment.

• Ethical and Sustainable KG-based ML pipeline compo-
nents, each structured by Definition, Challenges, Exam-
ples, Research Questions, and Recommendations.

Section II introduces the major terms: Ethical AI, Sustain-
able AI, Knowledge Graphs, AI/ML, and KG-based ML. In
Section III, we introduce the classical schema of a KG-based
ML R&D Pipeline. In Sections IV-IX, we introduce for each
step of this Pipeline Ethical and Sustainability considerations
for KG-based ML. Within the Conclusion, in Section X, we
summarize our work and provide future work directions.

II. PRELIMINARIES

A. Knowledge Graphs

Knowledge Graphs (KGs) are linked data representations of
information. Entities and values are associated with directed
relations. A KG corresponds to a directed labeled multi-graph.

B. Artificial Intelligence, and Machine Learning

Artificial intelligence is the theory and development of com-
puter systems able to perform tasks usually requiring human
intelligence, such as visual perception, speech recognition,
decision-making, and translation between languages [13]. One
option to reach and implement AI is Machine Learning (ML).
ML is the capacity of computers to learn and adapt without



following explicit instructions by using algorithms and statis-
tical models to analyze and infer from patterns in data [14].
Despite the conceptual differences, AI and ML are often used
synonymously.

C. Knowledge Graph based Machine Learning

In several approaches, KGs are the key element of ML
pipelines. On the one hand, ML approaches can perform
knowledge retrieval to enrich a KG database. In those cases,
information is extracted from multi-modal data sources like
natural language texts, images, tables, audio, and video. Also,
existing KG can be further enriched over Link Prediction,
Entity Resolution, Entity Matching, and Inference. On the
other hand, KG can be used as a source for downstream
ML pipelines. Those pipelines can implement Classification,
Regression, or Recommendation Systems. The ML model uses
stored values inside the KG and the graph structure. As the
structure can be arbitrarily complex, and common ML models
need fixed-length numeric feature tensors across all samples,
KG-based ML uses latent embeddings to reach through, e.g.,
Knowledge Graph Embeddings (KGE). Especially the second
case is considered to be KG-based ML, while the initial
creation and enrichment of the KG can also be a significant
source of ethical implications.

D. Artificial Intelligence Ethics

AI Ethics describes the efforts to investigate ethical and
moral aspects of AI-driven processes [11], [15]. As AI-driven
processes can impact our daily lives and might perform
autonomous decisions based on pre-trained models, those
can lead to unethical, discriminating situations [11]. Bad AI
behavior can be due to various reasons, like data bias or model
failure. Especially complex neural networks are perceived as
black-box systems. Through the effort of Explainable AI, the
models are leveraged to create reasonable and explainable
results [8], [11]. A typical example of Ethical AI comes from
the already known trolley dilemma. This example is related
to the decision-making process of self-driving cars in an
unavoidable accident situation where an autonomous system
needs to decide between several evils [15]–[17].

E. Sustainable Artificial Intelligence

Sustainable AI includes optimizations of AI/ML methods
that minimize the resource consumption of ML algorithms and,
if necessary, also justify it concerning the purpose [7], [8],
[18]. In contrast to Sustainable AI, AI for Sustainability are
approaches that use AI to drive processes that lead to a more
sustainable world [7].

III. KG BASED ML PIPELINE SCHEMA

The R&D lifecycle of KG-based ML follows the classical
scheme in Data Science project pipelines. In the following
sections, we present considerations for each step that investi-
gate both the sustainability and ethical dimensions. The first
step, Responsible AI Approach (see Sect. IV), introduces the
initial use case from which the KG-based approach derives.

In the next step, the needed technical System Setup (see
Sect. V) is created for later deployment. Subsequently, the
Data Insides are explored, curated, and processed to serve
as suitable training and evaluation data (see Sect. VI). An
ML model is selected and further developed that fits the use
case and the available data VII. This model is optimized
by iterative Training and Evaluation processes to achieve the
targeted performance (see Sect. VIII). In the final Deployment,
the models and the results are made available to the users
for further development, reproducibility, and interaction (see
Sect. IX). Each of these steps includes dedicated optimizations
for Sustainable AI and AI Ethics in general but also requires
a dedicated focus on the particular issues when dealing with
KG-based ML. Fig. 1 presents the respective steps according
to related research questions.

Fig. 1: Ethical and Sustainable KG based ML pipeline

IV. RESPONSIBLE AI APPROACH

Even before any technical decision has been made, any
line of code has been written, the multidisciplinary team
of stakeholders should reflect on the ethical and sustainable
implications of the technical KG-driven ML approach and
should have answers to the following questions: What are the
foreseeable edge cases, what are side effects? To what extent
will a tool be developed that allows unintended dual use? How
has the problem been solved in the past by humans in a non-
AI-driven process.?

A. Ethical KG based ML Approach

• Definition: In the first step, one must reflect on the
ethical implications and side effects of a KG-based ML
approach [8], [11].

• Challenges: It is impossible to conclude all different
effects directly from the initial application. In basic
research, complex models are trained and evaluated using
illustrative examples, which can then be applied to more



socially relevant topics. Same time, the tremendous inte-
gration opportunities of data integration and the chances
of conversational AI can lead to unintended dual use of
technology [19].

• Examples: Chatbots handle customer service centers for
e-commerce products. However, chatbots do not take
emergency calls, although both implement dialog-based
KG-based conversational AI systems to ask for help and
solve problems [15].

• Research Questions: Have the social and ethical impli-
cations of the specific KG-driven AI been evaluated and
allowed for responsible research and development of this
technology?

• Recommendations: The ethical implications of a KG-
driven AI process should be assessed and justified as
an initial step. The stakeholders concerned can initiate
a multi-layered evaluation in multidisciplinary teams. It
can reflect how it was solved in the past by humans or
classical imperative programs and if the use case should
be solved autonomously at all [15].

B. Responsible Investment of Resources

• Definition: Applying AI, in particular, to KG can be
processing intensive which has sustainability implica-
tions. [7], [8], [11], [20]

• Challenges: It is difficult to justify the significant
power and hardware resources directly through use cases.
Trained KGE corpora can indirectly add value as funda-
mental research, and created resources offer amortization
in follow-up approaches.

• Examples: The AI Alpha Go Zero, which is optimized to
play a well-known board game GO, generated 96 tons of
CO2 in 40 days of research training, equivalent to 1000h
of air travel or 23 American households [7].

• Research Questions: Are the resources used worth con-
suming? Are transfer learning use cases foreseeable that
validate the spending resources being reasonable? Is it
possible to develop to showcase KG-based AI develop-
ment directly on Use Cases with social or environmental
positive impact? Is a KG the most practical and energy-
efficient data representation for the dedicated follow-up
AI approaches?

• Recommendations: Develop and showcase KG-based AI
development directly on Use Cases with social or en-
vironmental positive impact. Sample KG AIs should be
accompanied by accessible and reusable KG data s.t.
invested resources can more likely amortize over multiple
projects.

V. SYSTEM SETUP

As KGs can be huge and processing, those have direct im-
plications on needed hardware complexity but also foreseeable
runtime. Both the hardware and electricity footprint should be
minimized under sustainability considerations. In KG querying
and embeddings, the whole data should be quickly accessible,
implying the need for distributed architectures. On the other

hand creation of KGE need synchronized instances of embed-
dings which is a technical bottleneck.

Fig. 2: Estimated CO2 emissions of Carbon Tracker experi-
ment [9]

A. Efficient Hardware Usage

• Definition: KG-based AI R&D lifecycle is performed on
computers. The necessary resources have a sustainability
footprint [9], [20]. This consists of the acquisition and
production of the hardware, the power consumption, and
the expected longevity [7], [21].

• Challenges: The hardware capabilities of KG-based ML
can be immense as KGE correlate to large language
model training that is processing power and memory
intensive [20]. The selection of hardware involves trade-
offs between reusing existing hardware or accumulat-
ing multiple nodes in a cluster to make the necessary
processing power available. New hardware may still
be essential as requirements increase because it has
more processing power or features and is more power-
efficient [21]. In addition, specific applications require
dedicated hardware and software platforms. With on-
premise system architecture, more individual decisions
can be made than with cloud computation systems [21],
while possible underutilization barely justifies the initial
hardware costs [22].

• Examples: (1) KGE needs to be trained once for one
Dataset, and from then on, it can be further used until KG
data has been updated. With Cloud Computing, PaaS, and
AI as a service, the hardware can be used more efficiently
over the whole day and year. Fewer instances of bought
hardware need to stay idle if load balancing and sharing
economy on servers are used. (2) If existing hardware can
be combined in clusters through distributed computing
architectures, existing resources can be used longer while
more processing power is needed

• Research Questions: How can the hardware resources be
used, reused, and utilized as efficiently as possible?

• Recommendations: Hardware should be deployed and
efficiently utilized either as a cloud solution or alterna-
tively as a crowd-shared on-premise architecture. Soft-
ware abstraction layers and containerization should con-
tribute to hardware-independent R&D and comfortable
deployment.



B. Optimizing Carbon Footprint

• Definition: As the on-premise or cloud systems need
electricity majorly as an ongoing resource, the footprint
also correlates to the electric energy production foot-
print [7], [9], [21]. KG-based ML, e.g., using KGE, needs
regular retraining as KGs are changing, and correspond-
ing models must be optimized to capture changes in data
structure and content.

• Challenges: One does not always have direct access to
the power contract of cloud or on-premise systems to
optimize it in the sustainability dimension. Also, the hard-
ware produces heat. As KG-based AI can be processing
intensive, the energy used should be minimized and fed
by renewable energy sources. [20]–[22]

• Examples: The European CO2 footprint of electricity
production differs significantly due to a different share of
renewable energies, nuclear power, and fossil fuels [23].
Because of weather and solar radiation, the CO2 footprint
is also dependent on the time of day (Figs. 2 & 6).

• Research Questions: How can the resource carbon foot-
print be minimized? Is it possible to schedule the regular
KG-based ML processes in times when more sustainable
energy is available (see Fig. 2)?

• Recommendations: The hardware used should be based
on CO2-neutral energy sources [21]. As part of the setup,
tracking [9] and documentation of the effectively used
resources and emissions footprint create transparency.
Schedule regular resource-intensive KG-based ML pro-
cesses like the KGE optimization being executed when
more renewable energy is available (see Fig. 6).

VI. DATA INSIGHTS

The KG data specifics play an extraordinary role in the
performance and behavior of KG-based AI processes [24].
The initial data selection decides which sources of information
and data are accessible to the process. Existing KGs can be
selected, merged, or further enriched by non-KG data.

Fig. 3: Google Search KG result about actor and pop-figure
”Chuck Norris”, see what is stated as Fact, Example taken
from Vang et. al. [10]

Fig. 4: Sample Image [25] motivating context in ML data

A. Knowledge Graph Data Reliability

• Definition: KGs are created and enriched by a variety
of processes. Incorrect or inaccurate information can be
mapped through the source data and process. Also, the
concept of open-world assumption (OWA) is part of KG
data. OWA states that information can be correct even if
this data is not in KG.

• Challenges: The sources of false information are com-
plex and sometimes difficult to trace. False data is not
always apparent at first sight.

• Examples: (1) Automatic retrieval of KG data from texts
or other multi-modal data can create inaccurate knowl-
edge data as those techniques do not work perfectly [26].
(2) The Open World Assumption (OWA) is a central
element in KG data, implying that information can also
exist if not stored in the KG. This OWA idea implies
causality if a KG does not contain specific data; this
information can still be accurate, which can lead by
chance to problems in the negative sampling in KGEs.
(3) Also, fraud and manipulation can happen as, e.g.,
DBpedia extracts its information from Wikipedia, but
public figures and institutions try to influence how they
are perceived and presented on the internet [8]. (4) Not
only bad intention but also humor or sarcasm can lead
to incorrect data as facts about pop culture people, e.g.,
Chuck Norris (see Fig. 3) [10]. (5) As facts change, KG
data could also be not up to date [27].

• Research Questions: What is the data quality, especially
to which extent is the stored information reliable? With
which intent, by whom, and through which processes has
this data been created?

• Recommendations: Quality, noise, and incorrect data are
identified through data analytics and should be docu-
mented and published through transparent FAIR princi-
ples.

B. Protecting Privacy vs. Enrichment of Context

• Definition: KGs have great potential to combine many
data sources and make them accessible to humans and
machines. More context can support AI-driven predic-
tions (see Fig. 4). For trustworthy AI, underlying trans-
parent and FAIR training data and metadata are essential.



• Challenges: However, a high level of transparency of
fully integrated data can also be exploited and used
for ethical purposes [19]. Therefore, there is a trade-
off in data accessibility between high transparency and
the need-to-know principle [28]. The model can be more
challenging to reproduce and validate with reduced trans-
parency by independent institutions.

• Examples: In some countries, personal relationships or
research in specific subject areas can lead to discrimina-
tion, persecution, or prison [19].

• Research Questions: For what ethical purposes can trans-
parent data be used? How can data be made both suffi-
ciently transparent for validation and securely accessible?
Which training and metadata should be made accessible
to humans and machines?

• Recommendations: Take a clear position in the trade-
off between the need-to-know and transparency. Enable
independent validation of technologies to justify why the
transparently available data is likely safe [8], [11].

VII. KNOWLEDGE GRAPH-BASED MACHINE LEARNING

KG-based ML is a major source of various AI approaches,
including Conversational AI, Question Answering Systems,
Recommendation Systems, and many more. The data integra-
tion opportunities of KG as a central data source for training
and result semantification offer high expressivity of multi-
modal linked knowledge. With the sheer size and restrictions
of current ML approaches, challenges are given in dimensions
of explainability and reproducibility.

A. Ethical & Explainable ML for KGs

• Definition: KG-based ML models and the corresponding
latent embeddings are multidimensional parameters and
feature spaces encoding properties and processes of the
AI. Accessibility, reproducibility, reusability, and explain-
ability are essential for ethical AI [11], [15], [29].

• Challenges: Since the data and features in KG are arbi-
trarily complex for each sample, and standard ML models
assume fixed numeric feature vectors, latent embeddings
like KGE are necessary [20], [30], [31]. Especially the
high-performance neural network models and latent em-
beddings significantly complicate explainability and lead
to AI often being perceived as a black box [32]–[34].

• Examples: (1) The approach distilling neural networks
transforms complex neural network ML models into more
explainable decision forest models [35]. (2) Explainable
AI approaches can also describe the features or embed-
ding components that were most influential [8] for a
specific prediction.

• Research Questions: Can the models produce explainable
predictions? Does KG-based ML’s complexity also allow
less powerful hardware to use the new technology?

• Recommendations: Use existing benchmarks to fit al-
ready developed models instead of developing new
ones [23]. Use KG-based ML models that focus on ex-
plainability. With conversational AI and result semantifi-

cation, the results become intuitively more accessible [8],
[36]. Use scalable models for KG-based AI [37]–[39] also
working on distributed systems [30], [31].

B. Critical and Sensitive Features

• Definition: KG ML training is based on structural and
value features. The distribution of the values may not rep-
resent the accurate distribution of the values [15]. Also,
special features are associated with discrimination, so
handling these features poses particular challenges [19],
[40].

• Challenges: The simple omission/deletion of features
can still lead to discrimination because, in these cases,
meta-data may still allow unintended feature reconstruc-
tion [12].

• Examples: Features associated with discrimination in-
clude age, gender, heritage, skin color, political orien-
tation, sexual orientation, and religion [8].

• Research Questions: Which features associated with dis-
crimination are present in the KG? In which dimensions
is there a bias, and why? Can features be aggregated,
pseudonymized, or re-balanced to reduce bias?

• Recommendations: Identify the presence of critical fea-
tures. Describe bias distributions in these features. Ag-
gregate, pseudonymize or remove critical features in a
transparent process. Evaluate whether removed features
can be reconstructed through metadata. Optimize labeling
and curation procedures to minimize bias [27], [41].

VIII. TRAINING AND EVALUATION

Significant problems of unfair AI predictions result from
suboptimal training. Skewed training data, unintended opti-
mization strategies resulting in discriminating optima lead to
results which can be later challenging to explain or fix due
to the complexity of nowadays embeddings based and neural
network ML pipelines. Same time the training of ML models is
a fundamental part of spent resources within the KG-based ML
R&D lifecycle. So training and evaluation should be optimized
to reduce the carbon footprint.

Fig. 5: BBC article [42] about hurtful/racism ML annotated
Google Photos image category



Fig. 6: Real-time carbon intensity (gCO 2eq/kWh) for Den-
mark (DK) and Great Britain (GB) from 2020-05-18 to 2020-
05-25 shown in local time from Carbon Tracker analytics [9]

A. Bias in Training and Evaluation

• Definition: ML models are trained by minimizing the
error of predicted results compared to the actual annotated
true label. The performance of a model is measured by
performance over unseen samples.

• Challenges: If the test and validation data are biased or
do not contain sufficient data about possibly discrimi-
nated entities, they will not be present in overall precision
or recall measures [11].

• Examples: (1) ML-based image grouping within Google
Photos led to a hurtful, racist classification of people of
colour [42]. (2) The Microsoft chatbot Tay was influenced
by Twitter users to state offending and hate speech
texts (See Fig. 5 & Fig. 7) [43].

• Research Questions: Are the test and validation set
biased? Are opportunities available to live annotated in
production KG AI predictions?

• Recommendations: A definition of critical samples and
tests of dedicated edge cases should be performed. Users
or affected humans should have the option to report prob-
lematic predictions in live systems as it is already typical
for bug and issue reports in open source projects [8],
[27]. The model should be tested before deploying and
afterward to ensure that the initially made claims still
suit outside world scenarios [8]. As part of evaluation
dissemination, the performance across all samples and
subset performances should be accessible. Additionally,
the performance across critical features should be vali-
dated [12]. With the opportunities for data integration of
KGs, an improved opportunity is given to identify bias
among samples and optimize the training data distribu-
tion.

B. Sustainable Training

• Definition: Training KG-based ML requires considerable
resources since both latent embeddings and (Graph-)
Neural Networks have significant training efforts [9],
[30], [31]. During the initial exploration of the models,
the optimal configuration of the hyper-parameters must
be found.

• Challenges: Since KGE are optimized from random
vectors and represent exact KG entities, these models
cannot handle out-of-sample entities by default. Models
that support out-of-sample handling or inductive link pre-
diction require further adjustments to minimize retraining
from scratch [20]. Additionally, the search within the
hyper-parameter grid requires recurrent training of the
same model.

• Examples: The training of latent embeddings KGE ex-
ceeds the already vast complexity of large language
models [20], [30] which already produced huge carbon
emissions [44], [45] (see Table I).

• Research Questions: How does KG-based AI deal with
samples not yet seen? How can transfer learning and
update ability be implemented in the approaches so that
it is not necessary to train from scratch with changing
KG data or novel entities [20]?

• Recommendations: Evaluate the KG data volatility. Use
KG-based AI models that allow out-of-sample learn-
ing [46], inductive link prediction, and transfer learning.
Reduce the hyper-parameter space to a minimum in a
grid search and use early stopping to minimize overfitting
and unnecessary training cycles [9], [21]. Further data
and model compression optimization can additionally
minimize the necessary resources [38].

IX. ACCESSIBLE DEPLOYMENT

In general, several optimizations targeting accessible de-
ployment for AI are also applicable to KG-based ML. These
include easy accessibility over good documentation, open
source code, sample notebooks, AIaaS, and a peer-reviewed
scientific publication. These improve the trust, reusability, and
reproducibility of the approach. The opportunities of result
semantification offer opportunities to enhance ethical and fair
KG-based ML behavior.

Scenario Carbon Footprint

Roundtrip flight b/w NY and SF (one passenger) 1,984
Human life (avg. one year) 11,023
American life (avg. one year) 36,156
US car including fuel (avg. one lifetime) 126,000
Transformer (213M parameters) W/ neural architecture search 626,155

TABLE I: Carbon Footprint Large Language Model [44], [45]

A. Prediction and Meta Data Semantification

• Definition: For the application, validation, and further
development of KG-based AI, accessibility and repro-
ducibility are fundamentally important. In addition to
the technical details, resource consumption can also be
tracked [7], [9].

• Challenges: Throughout the ML pipeline, there are
many (hyper-)parameters and resource-consuming in-
stances necessary for holistic tracking. At the same time,
the carbon footprint is not traceable at all times since not
every phase transparently breaks down the used resources.

• Examples: The tool Carbontracker supports the auto-
mated evaluation of CO2 footprints [7], [9], [21], [45].



Fig. 7: Blog post from the Verge article [43] about manipu-
lated Chatbot AI stating offending and hate speech texts

• Research Questions: Which resources were used
throughout the KG ML lifecycle, and how can they
be tracked automatically? Which (hyper-)parameters and
configuration information are necessary to use, reproduce,
validate and further develop the entire KG AI [7], [11]?

• Recommendations: Existing AI CO2 tracking systems
can be used to add resource consumption to documen-
tation automatically (see Fig. I) [7], [9], [21], [45]. The
use of standardized ontologies like MEX and MLschema
allows a human and machine-readable tracking and doc-
umentation of the AI setup [47], [48].

B. Crowd Sourced AI Labeling and Intervention

• Definition: AI trends like Conversational AI also rely on
KG-based ML. These allow both machine and human-
readable ML data and predictions.

• Challenges: ML models are optimized on training, test,
and validation sets, but after they are deployed, these
models will also face unseen samples. The resulting
predictions can be wrong or perceived to be unethical.
The interaction with ML in live systems also allows
manipulation and fraud. Same time, the exchange can
also have an underlying bias in contributors [41].

• Examples: The Never Ending Learning Project NELL
enriches its knowledge base and offers the crowd to
interact with recent KG-based ML results improving the
ML performance and validity of knowledge base [27].

• Research Questions: Does the KG-based ML provide re-
porting and intervention options to improve the KG base
and its ML predictions? What are the safeguards against
manipulation and bias of crowd-sourced contributors [8]?

• Recommendations: Provide interaction and reporting
mechanisms for crowd-sourced interaction with the
AI [27]. Track and report the influence of crowd to
ML predictions [8]. Generate accessible and understand-
able ML predictions aligned to conversational and ex-
plainable AI concepts. Benchmark the developed KG-
based ML with critical unseen examples focused on non-
discriminating and ethical model performance.

X. CONCLUSION

The opportunities for ethical and sustainability optimiza-
tions for KG-based ML are manifold. This work introduced
the most prominent ethical concerns raised by the large-scale
deployment of KG-based ML applications. We show how
sustainability, ethics, KG, and ML are interwoven across the
entire R&D life cycle. The possibilities range from an initial
reflective check on how far use cases should be automated by
AIs, taking into account potential side effects and edge cases.
Even during the initial setup of the processing environment,
foreseeable resource utilization can be optimized and technical
reproducibility can be improved. The data in KG-based ML
pipelines also significantly affect the process and should be
evaluated regarding reliability, bias, and fairness. In addition,
careful handling of special features is essential, including the
trade-off between sufficient data context and privacy princi-
ples. The development of ML models can also be optimized
technically in pipeline development through more sustainable
training and ethical models with the help of explainable
AI, fair evaluation, and accessible deployment. The deployed
models should fulfill a broad range of interaction options with
humans to report problems, handle unseen samples, and be
used in transfer learning tasks. We introduce the application
of AI Ethics and Sustainable AI to the KG-based ML domain.
The work presented here is not intended to be complete as the
field is broad. However, it is a starting point for KG-based AI
R&D teams interested in optimizing technology under ethical
and sustainability concerns. The findings are presented by a
transfer of ethical, sustainable, and novel introduced consider-
ations, including examples of past problems and suggestions
for hands-on optimizations and solutions.

A. Future Work

The concepts presented here are mostly part of every KG-
based ML pipeline. We believe that through easy-to-use tools
and integration into widely used libraries, assistance should be
offered as already the first applications provide it [9]. We are
committed to supporting the process of ethical and sustainable
KG-based ML research and development with hands-on solu-
tions to advance this field. Corresponding to the FAIR concept,
this paper should introduce meta dimensions of good research
and development for KG-based ML in dimensions of Ethics
and Sustainability.
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