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Summary

Graph Coloring Problem (GCP) is an NP-complete optimization problem. It’s famous

for its applications in scheduling, register allocation, and map coloring. In recent years,

biological inspired and especially Swarm Intelligence (SI) techniques have gained popularity

for solving complex optimization problems. In this paper, we have proposed Blind Naked

Mole Rat based Coloring (BNMR-Col) for graphs. BNMR-Col uses both exploitation and

exploration to find the best solution in search space. Exploitation uses both local moves

and global moves to find a better solution in the surroundings of an existing solution. On

the other hand, exploration generates new solution by combining various solutions from the

search space. BNMR-Col shows better convergence rate and approaches the lowest color

value in 83% of the cases when tested on standard benchmark graph instances.
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1 INTRODUCTION

Evolutionary algorithms have gained popularity in the last few years due to their capability to solve complex optimization problems efficiently
and effectively. Researchers have proposed numerous applications of these algorithms in resource optimization 1, economic dispatch 2, large scale
global optimization 3, parameter estimation 4, and engineering problems 5. These population-based algorithms are inspired by the mechanism of
biological evolution and maintain a set of candidate solutions. Crossover, mutation, and reproduction are central to many of these algorithms.
Genetic Algorithm (GA) is a widely used population-based evolutionary algorithm that also has its applications in graph problems. The problems
include graph partitioning 6,7,8, steiner graph problem 9,10, and Graph Coloring Problem (GCP) 11.

Let G = (V,E) be a simple graph, where V and E represent the set of vertices and the set of edges respectively. GCP is an assignment of
minimum colors (labels) to the vertices of a graph such that the adjacent vertices do not have the same color. Solving GCP with the minimum
possible colorsmakes it a hard problem. GCP has beenmapped to numerous application areas including resource scheduling 12, Parking Algorithm 13,
wireless network channel allocation problem 14, video synopsis problem 15, and multiple stacks traveling salesman person problem 16. A specialized
case of GCP is k-GCP. Let k be the number of colors assigned to vertices of a graph then the conflict optimization version of k-GCP minimizes the
number of conflicts in the graph. The optimal solution of k-GCP is a coloring configuration with zero conflicts and is termed as proper k-coloring.

Blind NakedMole-Rats (BNMR) algorithm 17 is a meta-heuristic that is inspired by the social behavior and population rich colony culture of blind
naked mole rats. BNMR uses both exploration and exploitation to search the optimal solution in the search space. Exploration helps to explore the
far away areas in search space while exploitation helps to converge to a solution by exploring the neighborhood of a fittest solution. Attenuation
coefficient controls the rate of exploitation and decreases with number of iterations. It has been observed empirically that BNMR prevents from
trapping in local optima and outperforms several competing algorithms (such as particle swarm optimization, artifical bee colony , genetic algorithm,

0Abbreviations: GCP, graph coloring problem; BNMR-Col, blind naked mole rat based coloring; SDO, saturation degree ordering
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stem cells algorithm, and simulated annealing) when applied to numerical function optimization 17, data clustering 18, traveling salesman person
problem 19, and electromagnetic designing 20.

In this article, we have proposed BNMR-Col algorithm to solve k-GCP optimization problem. BNMR-Col addresses numerous research questions:
(i) How BNMR algorithm can be modified to solve GCP? (ii) Will BNMR-Col always converge for benchmark graph instances? (iii) Can BNMR-Col
outperform Chromaticats and ANTCOL algorithms?We have tested BNMR-Col on DIMACS graphs instances 11,21 and compared with the relevant
techniques (i.e ANTCOL 22 and chromaticats 23). This paper is organized as follows. In section 2 we have discussed the relevant techniques that
have been applied to GCP. Section 3 presents the BNMR algorithm and major components of BNMR-Col algorithm. In section 4, we have explained
BNMR-Col algorithm. Section 5 presents the results of bnmr-col, ANTCOL, Chromaticats on popular graph instances. Finally, we conclude our
work and discuss the future ideas in section 6.

2 LITERATURE REVIEW

Swarm Intelligence (SI) 24 and evolutionary algorithms 25,26 are the famous bio-inspired algorithms that have gained popularity in the last few years
and have been successfully applied to many real world problems (including but not limited to link prediction 27, clustering 28, and model tuning
& hyper-parameter optimization 29). SI technique comprises a population of candidate solutions and have shown competitive results for GCP.
Gravitational Swarm Intelligence (GSI) was applied to solve GCP 30 and was found that the chromatic number found by GSI was either equivalent or
better than Degree of Saturation 31, Tabu Search 32, Simulated Annealing 33, and Ant Colony Optimization (ACO) 34. A famous SI algorithm discrete
cuckoo optimization was also applied to GCP that achieved a success rate but was unable to produce optimal results for all benchmark graph
instances 35. In another effort a proper coloring of a graph was generated using the collective experience of an artificial ant colony ANTCOL 36. Each
ant in the colony iteratively builds a coloring with the probability of selecting a vertex in each step based on the accumulated coloring experience of
the ant colony. Empirical results revealed that the number of colors used by ANTCOL is closer to the probabilistically estimated chromatic number
for a given graph 37.

A hybrid algorithm comprising discrete version of PSO and local search was also proposed to solve GCP 38. The hybrid technique used a distance
measure defined over a discrete solution space to evaluate the difference between two particle positions (i.e. coloring). Once the position of each
particle is updated, the Tabucol algorithm 39 is used to reduce the number of conflicts. However, this hybrid technique worked on limited instances
of discrete solution space. In another approach, ABC algorithm used an order based technique for solving GCP. Food sources were represented as
a set of n-component vectors where each component corresponds to a node in the graph. The algorithm decodes each food source as a potential
solution to GCP by ordering each component in ascending order and then coloring the graph using the first-fit strategy. The ABC algorithm exhibits
a slightly better performance than Largest Degree Ordering (LDO) and Saturation Degree Ordering (SDO). LDO gives preference to the nodes that
have the highest number of edges incident to them while SDO prioritizes the nodes based on the number of colors in the neighborhood of a node.
However, the authors selected a few graphs instances that were of limited edge density 40. Karim Baiche et. al. enhanced the dragonfly algorithm to
ensure the diversity of solutions that potentially avoids local optima 41. The approach was tested on a limited number of DIMACS graph instances.

A Cat Swarm Optimization (CSO) based technique chromaticats was proposed that comprises two phases (i.e. seeking and tracing mode). The
seekingmode is designed to identify proper coloring and further optimizing the solution byminimizing the number of used colors. The tracingmode
explores new possible colorings by using randommutation. Chromaticats converged in fewer iterations when compared to Cultural Algorithm (CA)
and Evolutionary Programming (EP). However, it takes more computational time to complete each iteration 23. Kui Chen and Hitoshi Kanoh used
adaptive artificial bee colony algorithm to find better graph coloring compared to different variants of artificial bee colony algorithms 42. Authors
tested the effectiveness of the proposed approach on 30 graph instances.

Although these already attempted SI algorithms effectively find good solutions for limited graph instances (e.g. Hybrid algorithm 38 performs
for limited graph instances of discrete solution space, ABC algorithm 40 performs better better for graph instances with limited edge density, and
enhanced binary dragonfly algorithm 41 was also tested for a limited number of DIMACS graph instances) but they suffer with slow convergence
rate. Moreover few SI algorithms like chromaticats 23 has high computational cost per iteration.

Taherdangkoo, M. and Taherdangkoo, R. proposed a modified BNMR algorithm (i.e. M-BNMR) to deal Loney’s Solenoid Optimization (LSO)
problem and incorporated the idea of searching areas which have not been examined due to the stochastic nature of the search process. The
algorithm exhibits a better convergence rate and effectively avoids the local optima 43. M-BNMR revealed better results compared to other SI
algorithms (including PSO, ABC, Gaussian ABC, and stem cells algorithm). Faster convergence rate and better computational time of BNMR and
M-BNMR inspired us to explore the potential of BNMR algorithm for graph coloring problem. In this paper we have proposed BNMR-Col to solve
graph coloring problem that have competitive results for various graph instances.
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3 PRELIMINARIES

3.1 Blind Naked Mole Rat (BNMR)

BNMR is a meta-heuristic based on social behavior of mole-rats. They searched the food and protects the colony against the attacks. BNMR
worked at random on the complete problem space. Number of mole rats(i.e. population) are twice the number of food sources. Whereas each
food source represents a response for problem space i.e. target to be found by mole-rats. BNMR has focused to overcome the issues faced by the
conventional optimization algorithms like low convergence rate and getting stuck in local optima. Algorithm 1 presents the optimization process
of BNMR algorithm 38.

Algorithm 1 Blind Naked Mole Rat (BNMR) Algorithm
Require:

Define Objective function f(Xi)

Define constants α, β, ζ, and maximum number of iterations T
Initialize populationX = {Xi}, removal rate bi where i = 1 · · ·N andXi = [xi

1 · · ·xi
d] ▷ d represents the dimensions of the search space

Ensure: Xbest ▷ Optimal or Near Optimal Solution
1: SortXi such that f(Xi) ≥ f(Xi+1)

2: t← 1 ▷ Reset iteration counter
3: while t ≤ T do ▷While stopping criteria not met i.e. maximum iterations
4: Xnew ← [xnew

j ]← xMin
j + β(xMax

j − xMin
j )

5: if rand ≤ Ai then ▷ Exploitation phase
6: Select a solutionXbest among the best solutions using the probability pi =

f(Xi)=FSi∗Ri∑N
k=1 f(Xk)

7: FindXlocal aroundXbest

8: end if
9: Generate a new solutionXrand using random search ▷ Exploration phase
10: if rand ≤ Bi & f(Xi) < f(Xopt) then
11: Accept and save the new solutions in the memory of mole-rat
12: end if
13: end while

Let Mi be a mole rat with a food source Xi and removal rate bi, where i = 1 · · ·m. Mi performs both exploration and exploitation in each
iteration of BNMR. In exploitation Mi select another mole-rat Mj with food source Xj (based on relative fitness probability). Mi generates a
neighboring food source X′

j for Mj . In case of exploration, BNMR considers Mi a potential invader. Therefore, it generates a new random food
sourceX′

i . If f(X′
i) is better than f(Xi) thenMi is mark as invader and replaces its food sourceXi withX′

i .

Table 1 Average number of conflicts using 10 runs of Random-k and k-ColorWalk for Leighton graphs with known chromatic number (△)

Instance △ Number of conflicts
Random-k k-ColorWalk

le450_5a 5 1144 815
le450_5b 5 1127 838
le450_5c 5 1988 1619
le450_5d 5 1927 1583
le450_15a 15 548 156
le450_15b 15 543 158
le450_15c 15 1124 698
le450_15d 15 1106 685
le450_25a 25 334 31
le450_25b 25 328 27
le450_25c 25 703 231
le450_25d 25 693 236
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3.2 Population (P )

Population P = M1 · · ·MN consists of N mole-rats with no division of labor mole-rats as suggested by M. Taherdangkoo et al. 18. Each mole-rat
Mj = Xj , Tj , sj , bj consist of an assigned food sourceXj , a restricted list of vertices Tj , a stagnation counter sj , and removal rate bj . Each food
sourceXj represents a potential solution to the problem from the solution space S. Each food sourceXj is initialized by a randomized algorithm,
k-ColorWalk as described in Algorithm 2. The algorithm uses the structure of the graph to initially build k color classes without any conflict. After
that remaining uncolored vertices, if any, are assigned random color cr such that cr ∈ {c1 · · · ck}

Algorithm 2 k-ColorWalk for Population Initialization
Require:

Graph G← (V,E) ▷ Graph with vertex set V and edge set E
Initialize k ▷Maximum number of colors
ci where i ← 0 · · · k ▷ Number of colors currently assigned
Cj ← 0 where j = {1 · · · |V |} ▷ Color of vertex u
U ← V ▷ Set of vertices to visit
S ← ϕ ▷ Set of visited vertices
T ← ϕ ▷ Set of neighbor vertices that still needs to be explore
N(u)← {v} such that ∀v there exists (u, v) ▷ Neighborhood of a vertex u

Ensure:
1: while i ≤ k do
2: i← i+ 1

3: while U ̸= ϕ do
4: Randomly select u ∈ U

5: if ci /∈ CN(u) then
6: Cu = ci

7: end if
8: T ← N(u)

9: S ← S ∪ u

10: U ← U − u

11: while T ̸= ϕ do
12: Randomly select t ∈ T

13: if ci /∈ CN(t) then
14: Ct = ci

15: end if
16: S ← S ∪ t

17: T ← T ∪N(t)

18: T ← T − S

19: end while
20: end while
21: end while

Another approach Random-k is used to create the initial solutions by assigning assignment colors to the vertices. Random-k results in higher
number of conflicts as compared to k-ColorWalk. Table 1 displays the average number of conflicts using 10 runs of Random-k and k-ColorWalk for
Leighton graphs. Generating k-colorings for the given graph using k-ColorWalk helps to keep large-sized color classes and generates the coloring
with fewer conflicts compared to Random-k. This strategy helps to improve the convergence speed. However, number of conflicts in initial coloring
does not effect the final solution 44.
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3.3 Attenuation Coefficient

Attenuation coefficientA is a variable that controls the probability of a mole-rat to select one of the best solutions and improve it. Attenuation rate
starts from a higher initial value and gradually settles down to a lower probability value. It is defined as A = α ∗ e

−αi
z , where α is a user-specified

value that controls the rate of decrement, i is the current iteration and z is half of the maximum iteration value set by the user.

3.4 Conflict Resolution

Conflict resolution in GCP checks the adjacent vertices having the same color. Various conflict resolution strategies have been proposed. We have
used SDO 31 for conflict resolution due to it’s simplicity and effectiveness. In SDO, saturation degree of a vertex is defined as the number of it’s
adjacent differently colored vertices. Let C be the set of all conflicting vertices in the graph then set of available conflicting vertices (CA = C − l)
is obtained by removing all tabu vertices(l) from C. Tabu vertices are the vertices that have been visited recently and belongs to set C. To generate
a neighboring solution, a vertex vi ∈ CA is randomly selected. Using probability β, vi is assigned either lowest color (c = 1) or a random color cr
such that 2 ≤ cr ≤ k. Then we uncolor the vertices adjacent to vi. After this, we iteratively select a vertex vi ∈ CA with largest saturation degree
and assign it either a lowest legal color or a random color in the range [2 · · · k]. After coloring all the vertices vi, these are added in the restricted
list. The length of restricted list l is adjusted dynamically using l =

∑k
c=1 h(v

c
i ) + r. Here r is a random number in the range [1-10] and h(vci ) is

the number of conflicts in the food sourceXi given by equation 2.
Figure 1 shows the step by step working of One k-SDOmove using a k-coloring graph with two conflicting vertices v2 and v5 as shown in figure

1a. Figure 1b shows the first step of One k-SDO move which is to select a conflicting vertex and assign it the lowest color. In the next step we
uncolor all the vertices in the neighborhood of selected conflicting vertex as shown in figure 1c. In the next step (figure 1d), we iteratively color
all the vertices in the neighborhood of the selected conflicting vertex v2 using Saturation Degree Ordering (SDO) with k as a fixed bound not to
exceed while assigning a color value. Then we select uncolored vertex with maximum saturation degree (i.e. v5) and assign it lowest legal color (c1)
as shown in figure 1e. In a similar fashion all the remaining uncolored vertices are assigned colors using saturation degree as the order of priority
(figure 1f - 1i). If no legal color is available for assignment to a given vertex, any random color is assigned within 1 to k value. In the final step we
assign lowest legal color to all uncolored vertices as shown in figure 1j.

3.5 Exploitation

Exploitation is the process of improving assigned food source towards a better solution by a given mole-rat. It is further divided into two phases,
(i.e. Self-Exploitation (SE) and Probabilistic-Exploitation (PE)). In SE, a mole-rat Mi applies the local search procedure on its assigned food source
Xi to generate a neighboring solution. While in PE, a mole-rat Mi generates neighboring solutions for other mole-rats Mj using tabu search 45.
Both of these phases are briefly discussed in following sub sections.

3.5.1 Self-Exploitation

In self-exploitation phase, a mole-rat Mj generates a neighborhood of its assigned food source Xj using SDO technique. A neighboring solution
of Xj is generated by selecting a conflicting vertex vi ∈ C having maximum conflict degree dc(vi). Conflict degree of a vertex vi is the number
of vertices adjacent to vi, which have the same color label as of vi. After generating Y Neighboring Solutions {Xj1 , Xj2 · · ·XjY } for Xj , a
neighboring solution Xjbest with the least number of conflicts (i.e.

∑k
c=1 h(v

c
jbest

) >
∑k

c=1 g(v
c
jy ) where best ̸= n and y = 1 · · ·Y ) compared

toXj is selected to replaceXj .
Figure 2 shows the working of self-exploitation using an example. Let Xj be the initial coloring of the mole-rat Mj as shown in figure 2a. A

set of conflicting vertices C = 1, 2, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 18, 19 represents all the distinct vertices that have conflicting colors in adjacent
vertices. A set of restricted list T consist of all those vertices that are forbidden to be selected and is empty at the start. Set of available conflicting
vertices CA is obtained by removing all vertices in T from C (i.e. CA = C − T ). A neighbor move is generated by selecting a vertex from CA

and performing one k-SDO move to that vertex. Let us consider that the first neighbor move is generated by selecting the vertex with the largest
conflict degree. All the other moves are generated by selecting a vertex randomly from CA. Two moves N1 using vertex v11 and N2 using vertex
v4 have been generated in Figure 2a. Here v11 is the vertex with largest conflict degree and v4 is a randomly selected vertex. N1 reduces the
conflicts to 7 and N2 results in 8 conflicts. Subsequently, the best move among the neighbor moves is selected. It is clear that N1 has better fitness
than N2. Also, the fitness of N1 is better than initial coloring (i.e. 13 conflicts) of mole-rat Mj . Thus, current coloring Xj of mole-rat is replaced
with N1. Conflicting vertex v11 selected to generate N1 is considered as tabu and added in T . This completes one single Local Move step for a
mole-rat in an iteration. In the second iteration, the same procedure is repeated and two neighbor moves are generated using modified coloring of
mole-rat. Figure 2b shows the modified coloringXj and two new neighbor moves N1 and N2. Note that v11 is not available as a conflicting vertex
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(a) k-coloring with two conflicting vertices (b) Step I of “One k-SDO” move (c) Step II of “One k-SDO” move

(d) Step III of “One k-SDO” move (e) Step IV of “One k-SDO” move (f) Step V of “One k-SDO” move

(g) Step VI of “One k-SDO” move (h) Step VII of “One k-SDO” move (i) Step VIII of “One k-SDO” move

(j) Step IX of “One k-SDO” move

Figure 1 Conflict resolution steps through One k-SDO move

as it is in T. New neighbor moves N1 and N2 are generated using v6 and v13. Both N1 and N2 produce coloring with the same number of conflicts
and both are better than current coloring of the mole-rat. Therefore, any one of them can be selected. Let N2 be the coloring which updates the
mole-rat. Figure 2c shows the next iteration of local move that results in elimination of all the conflicts.

3.5.2 Probabilistic-Exploitation

In this phase, a mole-rat Mj selects another target mole-rat Mt from the population. Selection is based on probability which is highest for the
fittest mole-rat. The probability ρ for each mole-rat in the population is defined as ρ((Mt)) =

f(Mt)∑N
u=1 f(Mu)

.
After selection ofMt, tabu search 45 is applied to food sourceXt for a limited number of iterations. Combining self-exploitation with tabu search

helps Mt to avoid getting stuck in local optima. Attenuation coefficient A controls the probability of a mole-rat to apply tabu search on another
mole-rat’s food source.
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(a) Step I - Neighborhood move

(b) Step II - Neighborhood move

(c) Step III - Neighborhood move

Figure 2 Self exploitation of a given food source

3.6 Exploration

Crossover operator is employed to build a new food sourceXnew utilizing the knowledge of best mole-rats in the colony. We have used Adaptive
Multi-Parent Crossover (AMPaX) operator 46 with a modified class evaluation function. AMPaX considers only the cardinality of the color class.
However, we extend AMPaX to count the no of conflicts also in order to determine the quality of the color class. If a mole-ratMi has below average
fitness in the colony and is unable to improve it’s fitness for λ number of iterations, then the food source Xi is replaced with Xnew. In order to
createXnew , we selectmmole-rats as parents (i.e.Mselected−1,Mselected−2 · · ·Mselected−m ), such thatm ≥ 2, and the selected mole-rats are
the fittest mole-rats of the population. We evaluate each color class c inXj (where j = 1 · · ·m) using equation 1.

g(V c
j ) = |V c

j | × h(V c
j ) (1)
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(a) Selected mole-rats for exploration phase

(b) First step of exploration

(c) Second step of exploration

(d) Third step of exploration

Figure 3 Exploration Phase comprising four parent mole rats to generate new food source.
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Figure 4 Solution obtained from exploration phase

Where |V c
j | is the number of vertices in Xj that belongs to color class c, and h(V c

j ) is a function that evaluates the fitness of color class V c
j

based on ∁cj number of conflicting vertices in V c
j as elaborated in equation 2 and equation 3.

h(V c
j ) =


1 if ∁cj = 0

0.667 if∁cj = 1

1
∁c
j

otherwise

(2)

∁cj =

E∑
i=1

∣∣∣∣∀(va, vb) ∈ E | va, vb ∈ V c
j

∣∣∣∣ (3)

After evaluating the color classes for all the selected parent mole-rats, a mole-rat Ma ∈ Mselected−1,Mselected−2 · · ·Mselected−m is selected
that has the best color class c∗ i.e. h(V c∗

a ) ≥ h(V c
j ), where j ̸= a and j = 1 · · ·m. All the vertices V c∗

a of the best-selected color class are
then transferred to Xnew as its first color class. A restricted list with size m/2 is maintained to keep diversity in selection. Mole-rat Ma is added
in the restricted list and vertices in V c

a ∗ are then removed from all the selected parent mole-rats. In next step, another parent mole-rat Mb ∈
Mselected−1,Mselected−2 · · ·Mselected−m with best color class V c∗∗

b among all the parent mole-rats is selected. Note thatMb should not be the
part of restricted list. All the vertices in V c∗∗

b are then transferred to Xnew as its second color class. In similar manner, k number of color classes
are transferred to Xnew ,. Any uncolored vertices in Xnew are then assigned random color cr such that 1 ≤ cr ≤ k. The new food source Xnew

finally replacesXi.
We have explained the concept of exploration using an example as shown in figure 3. we have selected 4 mole-rats M1,M2,M3, andM4 to

build a new graph coloring Xnew . Three color classes has been transferred from selected parent mole-rats to Xnew as k = 3. In the first step,
the best color class is determined among all the mole-rats. Consider mole-rat M1 and its color classes C1, C2 and C3. Quality of a color class
is determined using equation 1. There are three vertices in C1 and no conflict in the class, that results in the quality of color class g(C1) = 3.
Similarly, in C2, there are two vertices and no conflict. Quality of color class C2 is given as h(C2) = 2. Lastly, quality of color class C3 is equal to
h(C3) = 3.335 as there are five vertices and one conflict between v3 and v6. Therefore, the best color class ofM1 is C3. In the similar fashion, we
determine the best color classes of all mole-rats. The best color classes ofM2 is C1 with h(C1) = 4,M3 is C1 with h(C1) = 3, andM4 is C2 with
g(C2) = 2.668. The best color class among mole-rats M1 · · ·M4 is C1 of M2. This color class is then transferred to Xnew as its first color class.
M2 is considered as tabu for the next two iterations. All the vertices of C1 (v2, v3, v9, v10) are uncolored for mole-ratsM1 · · ·M4. This completes
first step of exploration, with a single class transferred toXnew . Figure 3b shows the first color class ofXnew after transferring C1 ofM2.

In following steps C3 of M1 and C2 of M4 is transferred to Xnew as shown in figure 3c and figure 3d respectively. After transferring all three
classes to Xnew , one vertex v4 still remains uncolored. This vertex is assigned a random color within bounds of 1 · · · k. Figure 4 shows the final
coloring solution.

3.7 Invader Removal

Colony defense mechanism 18 considers low-cost data points as invaders. They are replaced by randomly selected data points from search space,
thus causing mutation. In BNMR-Col vertices with the highest conflict degree are considered as invaders. In mutation we select a conflicting vertex
vi (with color cs) that has maximum conflict degree. We replace color of vi with a random color cr such that 1 ≤ cr ≤ k and cr ̸= cs.
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3.8 Removal Rate

Removal rate bi of a mole-ratMi defines the number of times mutation is performed. Initially, the removal rate is determined as in equation 4.

bj = 1 + (r × |V |) (4)

bj = 1 + (ζ × bj) (5)

Where r is a random number in the range 0.1−0.25 and |V | is the number of vertices in the graph. In each iteration, the removal rate is updated
as mentioned in equation 5. ζ specifies the rate of decrement or increment in the removal rate and can vary in the range of 0− 1.

3.9 Fitness Function

The fitness of each mole-rat f(Mi) is determined on the basis of the number of conflicts in its assigned food sourceXi. We use equation 6 to find
the fitness of each mole-rat.

f(Mi) =

k∑
c=1

h(V c
i ) (6)

4 BNMR-COL

Natural inspiration for the BNMR algorithm comes from the social behavior of blind nakedmole-rats in a colony. Two key aspects of mole-rat colony
behavior depicted in the BNMR meta-heuristic are digging of the tunnels and colony defense. Mole-rats dig tunnels in search of large tubers to
feed on. This behavior is modeled as a stochastic search for food sources. The colony defense mechanism is formulated as a mutation process to
enforce exploration in a search space.

Figure 5 Overview of BNMR colony for k-GCP

Each mole-rat in a colony independently searches for a configuration (k-coloring) with fewer conflicts. The queen mole-rat acts as a space to
store the best coloring as well as the fitness values of all the mole-rats as shown in figure 5. This enables queen mole-rat to facilitate other mole-
rats to coordinate with each other. BNMR-Col consists of four phases: (i) Population Initialization, (ii) Exploitation of Food Sources, (iii) Mutation,
and (iv) Crossover. Detailed working of BNMR-Col has been explained in algorithm 3.
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Algorithm 3 Blind Naked Mole Rat Coloring (BNMR-Col) Algorithm
Require:

G← (V,E) ▷ V is the set of vertices, E is the set of edges
Initialize k, α, β, ζ ▷ Number of colors, decrement factor for A, mutation probability, mole-rat removal rate’s decrement factor
InitializeXi = {Ci

1, C
i
1 · · ·Ci

k} ▷ ith Solution with vertices using k colors
DefineMi with food sourceXi ▷ Each mole rat initailed with a k coloring solution
Initialize bi and si ▷ Initialize removal rate and stagnation counter ofMi

Define t = 0, T , A ▷ Define current iteration, maximum iteration, and attenuation variable
Ensure: Xbest = {Cbest

1 , Cbest
2 · · ·Cbest

k } ▷ Optimal or Near Optimal Solution
1: while t ≤ T do ▷While stopping criteria not met i.e. maximum iterations
2: for eachMi do ▷ where i = 1 · · ·n
3: if rand ≤ Ai then ▷ Exploitation phase
4: Mi performs probabilistic exploitation onMj

5: end if
6: Mi performs self exploitation onXi

7: if rand < β and f(Mi) < f(Mbest) then
8: Assign random colors to bi vertices
9: end if
10: bi ← 1 + (ζ + bi)

11: if si > sl then
12: if f(Mi) <

∑n
j=1 f(Mj)

n
then

13: Apply invader removal mechanism toMi

14: sj ← 0

15: end if
16: end if
17: Determine and update best mole ratMbest

18: A = α exp
−αt
0.5T

19: t← t+ 1

20: end for
21: end while

5 RESULTS AND DISCUSSION

We have implemented BNMR-Col in C#. Moreover, we have also implemented BNMR-Col, ANTCOL and Chromaticats for comparison. We have
conducted experiments on a machine having 3.4 GHz Intel Core i3 4130 processor and 16 GB RAM, using 64-bit Windows 10 Operating System.
We have selected graph instances for experiments from a more recent collection of DIMACS instances by “COLOR02/03/04:

Table 2 Characteristics of graph instances from different graph families.

Mycielski Graphs (MYC) These triangle free graphs are based on Mycielski transformation.
Register Graphs (REG) Graph files are based on problem of register allocation for variables in real codes.
Book Graphs (SGB) Each vertex in a graph represents a fictional character and is connected by an edge with another character.
Game Graph (SGB) Each vertex represents a college football team and two teams are connected by an edge if they play a match.
Queen Graphs (SGB) Each vertex represents a square on chessboard and has an edge with all other vertices in same row, column, or diagonal.
Miles Graphs (SGB) Each vertex represents a USA city. Two vertices are connected by an edge if they are close enough, based on road mileage.
Insertion Graphs (CAR) These graphs are generalization of Mycielski graphs with inserted vertices to increase graph size but not density.
Random Graphs (DSJ) These are randomly generated graphs by David Johnson.
Multi Coloring Graphs These are quasi-random graphs intended for multi coloring problem and used for graph coloring by ignoring node weights.

Graph Coloring and its Generations” symposium 47. Graph instances are grouped together into various families based on their sources. A brief
description of graph families are discussed in table 2. Table 3 shows the characteristics of various graph instances from different graph families.
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Where |V | denotes the number of vertices in graph, |E| denotes the number of edges in graph,△ gives the degree of graph, and lowest k is the
known minimum value of colors for a graph with which it can be properly colored.

Table 3 Characteristics of various graph instances from MYC, REG, CAR and DSJ families along with uncategorized instances. |V | denotes the
number of vertices in the graph, |E| denotes the number of edges in the graph,△ gives the degree of the graph, and lowest k is the knownminimum
value of colors for a graph with which it can be properly colored.

Sr. instance family |V| |E| △ lowest k Sr. instance family |V| |E| △ lowest k
1 myciel3 MYC 11 20 5 4 21 1-FullIns_5 CAR 282 3247 95 5
2 myciel4 MYC 23 71 11 5 22 2-FullIns_3 CAR 52 201 15 4
3 myciel5 MYC 47 236 23 6 23 2-FullIns_4 CAR 212 1621 55 5
4 myciel6 MYC 95 755 47 7 24 3-FullIns_3 CAR 80 346 19 5
5 myciel7 MYC 191 2360 95 8 25 4-FullIns_3 CAR 114 541 23 6
6 mulsol.i.1 REG 197 3925 121 49 26 5-FullIns_3 CAR 154 792 27 7
7 mulsol.i.2 REG 188 3885 156 31 27 R100_1g - 100 509 20 5
8 mulsol.i.3 REG 184 3916 157 31 28 R100_5g - 100 2456 61 15
9 zeroin.i.1 REG 211 4100 111 49 29 R100_9g - 100 4438 45 36
10 zeroin.i.2 REG 211 3541 140 30 30 R75_1g - 70 251 12 4
11 zeroin.i.3 REG 206 3540 140 30 31 R75_5g - 75 1407 48 14
12 1-Insertions_4 CAR 67 232 22 5 32 R75_9g - 75 2513 71 33
13 1-Insertions_5 CAR 202 1227 67 6 33 R50_1g - 50 108 8 3
14 2-Insertions_3 CAR 37 72 9 4 34 R50_5g - 50 612 36 10
15 2-Insertions_4 CAR 149 541 37 5 35 R50_9g - 50 1092 47 21
16 3-Insertions_3 CAR 56 110 11 4 36 r125.1 - 125 209 8 5
17 3-Insertions_4 CAR 281 1046 56 5 37 r125.5 - 125 3838 99 36
18 4-Insertions_3 CAR 79 156 13 3 38 DSJC125.1 DSJ 125 736 23 5
19 1-FullIns_3 CAR 30 100 11 3 39 DSJC125.5 DSJ 125 3891 75 12
20 1-FullIns_4 CAR 93 593 32 4 40 DSJC125.9 DSJ 125 6961 120 30

Table 4 Characteristics of selected graph instances from Donald Knuth’s Stanford Graph Base

games120 SGB 120 638 26 9
queen5_5 SGB 25 320 32 5
queen6_6 SGB 36 580 38 7
queen7_7 SGB 49 952 48 7
queen8_8 SGB 64 1456 54 9
queen8_12 SGB 96 2736 64 12
queen9_9 SGB 81 2112 64 10

queen10_10 SGB 100 2940 70 11
queen11_11 SGB 121 3960 80 11
queen12_12 SBG 144 5192 86 13
miles250 SGB 128 774 32 8
miles500 SGB 128 2340 76 20
miles750 SGB 128 4226 128 31
miles1000 SGB 128 6432 172 42
miles1500 SGB 128 10396 212 73

anna SGB 138 493 142 11
huck SGB 74 301 106 11
jean SGB 80 254 72 10
david SGB 87 406 164 11

Graph instances from Donald Knuth’s Stanford Graph Base (SGB) are further divided into book, queen, miles graphs and a game graph. Table
4. shows number of vertices, number of edges, degree of graph and best known k for selected SGB graphs. Two basic strategies are employed
in BNMR-Col i.e. fixing k when chromatic number is known, and sequentially decreasing k until algorithm termination criteria is met where the
upper bound on k is provided by LDO. Rational behind using these graph instances for result comparison was the popularity and common use of
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these graph instances by state of the art graph coloring techniques. Table 5 depicts the parameters for ANTCOL, BNMR-Col and Chromaticats.
Parameters for ANTCOL and Chromaticats are used as suggested in their respective implementations.

Table 5 Parameters for AntCol, BNMR-Col and Chromaticats.

BNMR-Col Parameters Chromaticats Parameters ANTCOL Parameters
max_iteration = 100 Number of Cats = 30 nants = 100

N = 10 Number of Cycles = 100 ncyclesmax = 100
‘α = 0.5 MR=2% α=2
β = 0.1 CDC = 80 β=4
ζ=0.95 SMP=20 ρ=0.5
ρ = 40%
sl = 20

move_count = 50
depth_of_search= 20

ANTCOL, Chromaticats and BNMR-Col are executed five times on 18 graph instances for maximum 100 iterations. Success ratio is defined as
the number of times algorithm is able to reach best known number of colors denoted by k. Results have been shown in Table 6.

Table 7 show that none of the algorithm was able to find k for FullIns and DSJC125.1 graph instances. MSPGCA and W-GA were unable to
find optimal coloring for queen6_6 and queen8_8 instances. W-GA cannot find optimal coloring for queen7_7. MSPGCA reported coloring with
14 colors for queen8_12 instance, for which best known coloring is 12. BNMR-Col is able to match k for all of these instances. For queen10_10
instance MA-GCP and MSPGCA reported coloring of 13 and 14 respectively. BNMR-Col was unable to match best known coloring (i.e. 11) for this
instance. However, BNMR-Col reported coloring of 12, which is better than MA-GCP and MSPGCA. These results show that BNMR-Col is able to
match or produce better colorings than MSPGCA, MA-GCP and W-GA.

Table 6 Computational results of ANTCOL, Chromaticats, and BNMR-Col.

instance k
BNMR-Col ANTCOL Chromaticats

lowest k Success Ratio lowest k Success Ratio lowest k Success Ratio
myciel5 6 6 5/5 6 5/5 6 5/5
myciel6 7 7 5/5 7 5/5 7 5/5
queen5_5 5 5 5/5 5 5/5 5 5/5
queen6_6 7 7 5/5 7 5/5 7 3/5
queen7_7 7 7 3/5 7 1/5 7 1/5
miles250 8 8 5/5 8 5/5 8 2/5
miles500 20 20 5/5 20 5/5 20 2/5

jean 10 10 5/5 10 5/5 10 5/5
huck 11 11 5/5 11 5/5 11 5/5

1-FullIns_3 3 4 0/5 4 0/5 4 0/5
2-FullIns_3 4 5 0/5 5 0/5 5 0/5
R50_1g 3 3 5/5 3 5/5 3 1/5
R50_5g 10 10 5/5 10 5/5 10 5/5
R50_9g 21 21 5/5 21 5/5 21 2/5
R75_1g 4 4 5/5 4 5/5 4 2/5
R75_5g 13 13 5/5 13 5/5 15 0/5
R75_9g 33 33 5/5 33 5/5 34 0/5
mulsol.i.1 49 49 5/5 49 5/5 49 3/5

6 CONCLUSION

We have proposed a new algorithm BNMR-Col, an implementation of Blind Naked Mole-Rats metaheuristics for GCP. BNMR-Col is tested on
a wide range of DIMACS graph instances. We compared the results with other state ot the art swarm intelligence and evolutionary algorithms.
BNMR-Col is competitive and in 83% of the cases it approaches the best known value of k. Further research can be conducted to investigate the
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Table 7 Results of BNMR-Col, MA-GCP, MSPGCA and W-GA.

instance k MA-GCP[20] MSPGCA[18] W-GA[19] BNMR-Col
1-FullIns_5 5 - 6 - 6
2-FullIns_4 5 - 6 - 6
3-FullIns_4 6 - 7 - 7
4-FullIns_3 6 - 7 - 7
5-FullIns_3 7 - 8 - 8

1-Insertions_5 6 - 6 - 6
2-Insertions_4 5 - 5 - 5
3-Insertions_4 5 - 5 - 5
4-Insertions_4 5 - 5 - 5

myciel3 4 4 - 4 4
myciel4 5 5 - 5 5
myciel5 6 6 6 6 6
myciel6 7 7 7 - 7
myciel7 8 8 8 - 8

games120 9 9 9 9 9
huck 11 11 11 11 11
jean 10 10 10 10 10
david 11 11 11 11 11

queen5_5 5 5 5 5 5
queen6_6 7 7 8 8 7
queen7_7 7 7 7 8 7
queen8_8 9 - 11 10 9
queen8_12 12 - 14 - 12
queen9_9 10 - 10 - 10

queen10_10 11 13 14 - 12
miles250 8 8 - 8 8
miles500 20 20 - - 20
miles750 31 31 31 - 31
miles1000 42 42 42 42 42
miles1500 73 73 73 - 73

anna 11 11 11 11 11
DSJC125.1 5 - 6 - 6
mulsol.i.1 49 49 - - 49
zeroin.i.1 49 49 - - 49
fpsol2.i.1 65 - - 65 65

various aspects that this study was unable to address. More extensive computational experimentation involving large graph instances and using
more efficient graph library implementation is always desirable. Research can be conducted by using different and more complex fitness functions.
To improve diversification in population, a distance criterion can be used to distinguish between similar individuals of BNMR-Col. Reduction of
neighborhood size with the reduction of conflicts is a major issue for local move which can be explored further. Another area of possible future
research is to investigate cyclic behaviors and develop methods to avoid cycling in the search space. SI algorithms are intrinsically parallel in nature
and recent development of cluster computing frameworks like Apache Spark also opens new horizons for the development of scalable BNMR-Col
algorithm.
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