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Abstract—RDF data is playing an important role in publishing
and integrating heterogeneous data in data lakes. However, since
the data is generally created utilizing liberal curation approaches
such as crowd-sourcing and automatic extraction tools with no
cross-validation on input data, the data is prone to errors that can
be hidden in several dimensions. The types of errors which can be
considered as outliers may occur in any part of RDF statements,
especially in literal objects. Although some scientific studies have
revealed anomalies in knowledge graphs, none of the current
approaches has the ability to explain the anomalies that have
been discovered. In this paper, we present ExPAD, a scalable
and distributed framework for explainable numeric anomaly
detection on very large RDF knowledge graphs. Inspired by
OutlierTree, ExPAD generates human-readable explanations for
a given numeric result being an outlier by following and assessing
supervised decision tree splits. The proposed framework ExPAD
is open-source, well-documented, and fully integrated into the
Semantic Analytics Stack (SANSA). Experiments on real-world
use cases and synthetic datasets disclose that the framework can
not only handle high volumes of RDF data but also efficiently
generate explanations for hidden anomalies discovered in KGs.

Index Terms—RDF, Explainable Anomaly Detection, Big Data,
Distributed Computing, SANSA, Decision Tree

I. INTRODUCTION

Anomaly Detection (AD) (interchangeably known as Outlier
Detection) is a field of Machine Learning (ML) that tries
to identify rare items, events or observations which deviate
significantly from the majority of the data [1], [2]. Although
AD is a well-studied field in the area of machine learning
and statistics, there is a major gap of AD in the area of Se-
mantic Web and large-scale heterogeneous Knowledge Graphs
(KGs). Especially when it comes to interpretability, there is no
research work in the area of explainable anomaly detection in
KGs.

The Semantic Web enables a structural view of existing
data on the Web and provides machine-readable formats
such as the Resource Description Framework (RDF)[3]. RDF
data are a collection of triples ⟨subject, predicate, object⟩
which tend to have rich relationships, forming a potentially
very large and complex graph-like structure. These graphs
(KGs) are being generated in a variety of ways. Some KGs
such as Wikidata [4] have been created by crowd-sourcing.
DBpedia [5] has been created by automatically extracting
knowledge tools and NELL [6] has been created by natural

language processing techniques. As the entered data are gener-
ally neither constrained nor cross-validated, KGs are prone to
various types of errors because of the range of approaches and
freedom in inserting the input data. These errors can happen
at Subject, Predicate or Object part in the RDF format. For
example there can be errors in the predicate part, such as a
person has n birth places1 which n > 1 (normally, a person
has only one birthplace). Or there can be extraction errors
like parsing errors, e.g. in some cases the extraction tool can
not interpret “-” and converts “1989-2000” in Wikipedia2 to
“19892000” in DBpedia3.

Although numerous techniques for detecting outliers and
anomalies in unstructured collections of multiple dimension
points have been developed in recent years, with the current in-
terest in large-scale heterogeneous data in Knowledge Graphs,
most of the traditional algorithms are no longer directly
applicable on KGs due to scalability and RDF complex data
structure. Furthermore, uncovering why a reported anomaly
have occurred (explanation discovery), forms a crucial capa-
bility for any anomaly detection system.

In this paper, we propose ExPAD, a generic, distributed,
and scalable software framework that can automatically de-
tect numeric anomalies in KGs and produce human-readable
explanations for why a given value of a variable in an
observation can be considered as outlier. ExPAD is inspired
by OutlierTree [7] and works by evaluating and following
distributed supervised decision tree splits on variables. This
helps to detect and explain anomalous cases which can not
be detected without considering other features. For example,
a person’s age can be 2 and it is reasonable, however, the
age of a person who is a CEO of a company can usually
not be 2. Under this logic, it is possible to produce human-
readable explanations for why a given value of a variable in
an observation can be considered as outlier, by considering the
decision tree branch conditions.

Furthermore, given our main focus on distributed computing
and the ability to perform on large KGs, ExPAD is integrated
into the SANSA Stack [8]. This integration ensures that the

1https://dbpedia.org/page/Alireza Afzal
2https://en.wikipedia.org/wiki/Ian Turbott
3https://dbpedia.org/page/Ian Turbott



platform is maintained and continuously updated due to the
community involvement in the project’s operations.

To summarize, the main contributions of this paper are as
follows:

• A scalable distributed anomaly detection framework that
can automatically detect numeric anomalies in a large
RDF graph and provide clear explanations for why certain
values are identified as anomalies.

• Integration of ExPAD into the holistic SANSA stack
and making it open-source and publicly available on
GitHub [9]

• Covering the code by unit and integration tests, docu-
menting it, and providing a tutorial within Databricks [9]

• Evaluation of the results over multiple datasets and em-
pirical evaluation of scalability

The remainder of the paper is organized as follows: Sec-
tion II provides an overview of the related work. Section III
describes the architecture and implementation of ExPAD.
Section IV is devoted to the experimental setup, the datasets,
and scalability evaluation. Finally, Section V concludes the
paper and discusses the prospects for further development of
ExPAD.

II. RELATED WORK

This section presents prior related studies on Interpretable
Machine Learning, Anomaly Detection, and Anomaly Detec-
tion on KGs.

a) Interpretable Machine Learning.: Interpretable ma-
chine learning has recently gained a lot of attention [10] and
there are two broad categories of relevant techniques: inter-
pretable models and model-agnostic methods. Interpretable
models such as linear regression and decision trees construct a
human-readable model directly from data [10]. Model-agnostic
approaches, on the other hand, decouple explanations from
the ML model. There are several methods in the model-
agnostic family. LIME [11] explains every classifier prediction
by approximating it locally with an interpretable linear model.
In [12] authors improved upon LIME by replacing its linear
model with a logical rule for explaining a data instance.
SHAP [13] and RESP [14] scores are both instance-level
explanations that provide a numerical value to each attribute
based on its relevance in the result.

As ExPAD generates the explanation directly from data, it
can be classified under interpretable models family.

b) Anomaly Detection.: Anomaly Detection (AD) has a
long history of study. Because of the wide range of data prop-
erties, anomaly types, and application domains, AD method-
ologies range from statistical methods [15], [16], distance-
based [17], density-based [18], and isolation forests [19] to
deep learning methods [20]. A comprehensive review of AD
methods is beyond the scope of this paper; we refer the reader
to previous survey publications for a thorough discussion [2],
[20], [21].

We should mentioned that the mentioned approaches are
generally not scalable and more importantly can not be directly
applied on native RDF datasets.

c) Anomaly Detection Over KGs.: Although Anomaly
Detection is already a well-studied field, to the best of our
knowledge there has not been much dedicated research work
on anomaly detection on big RDF data. [22] is one of the
pioneers in the detection of erroneous numerical data in
DBpedia. The authors conducted the search for numerical
outliers in two phases. They began by categorizing the sub-
jects depending on the type, and outliers are found using
Interquartile Range in the next phase. The authors vectorized
the entities using the FeGeLOD framework [23] and stated
that the run-time on datasets with only two predicates -
DBpedia-owl:populationTotal and DBpedia-owl:elevation is
more than 24 hours due to the sluggish clustering approach.
Another work [24] offered two independent anomaly detection
approaches. They created a large sub-population in the first
step and then used outlier detection on the sub-population.
The owl:sameAs property was utilized in the second step
to affirm or reject outliers and determine if an outlier is a
natural outlier or not. Their solution, however, required manual
querying of data to retrieve the information. CONOD [25] is
the first scalable approach for detecting numerical outliers in
DBpedia. It created cohorts using rdf:type and Linked Hyper-
nyms Dataset (LHD) [26]. Cohorts, unlike clusters, have the
potential to overlap. CONOD employed a scalable clustering
technique based on Locality Sensitive Hashing (LSH) [27],
however, as it uses rdf:type and LHD for cohorting, it is only
applicable to DBpedia. DistAD [28] is another framework for
anomaly detection on large RDF knowledge graphs. DistAD is
scalable and provides a granularity for the end-users to select
from a vast number of different algorithms, methods, and
hyper-parameters to detect outliers. Although extraction part
of ExPAD is partially inspired by DistAD, these frameworks
are thoroughly distinctive. For example, DistAD does not
provide any explanation for the detected anomalies. Moreover,
the execution pipelines and the way that anomalies have
been detected are completely different from the algorithmic
perspective.

In summary, all the above-mentioned methods (except [25],
[28]) are not scalable to large-scale knowledge graphs, are
complex, and require manual intervention. Moreover, none of
them provide explanation for the detected anomalies.

III. EXPAD AS A RESOURCE

We now present ExPAD, a generic distributed framework
for Explainable Anomaly Detection in KGs. The main goal of
the framework is to detect numeric anomalies in KGs and to
provide human-readable explanations for why a given value
can be considered as an outlier. ExPAD vectorizes RDF data
(extracting literals from RDF which is explained in Section III-
A2), then to detect anomalies on a given numerical variable v,
it fits a Distributed Decision Tree4, choosing v as the target and
the rest of attributes as the features. Based on the depth of the
tree, v is divided to two or more partitions. By applying any
anomaly detection method (eg. IQR (Section III-A5a)) over the

4https://spark.apache.org/docs/latest/mllib-decision-tree.html
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Fig. 1: Trained decision tree with the target variable age

partitioned data and finding anomalies, it is possible to produce
explanations for why a given value of the target variable is
identified as outlier, by considering the decision tree branches
and their corresponding variables. An example is sketched
here to shed the lights on working of ExPAD. Consider an
RDF dataset containing information about the class Person
with sample predicates age (numerical), job (URI), and gender
(boolean) with 100 triples. After vectorizing and indexing
this data (explained in Section III-A2), ExPAD considers one
predicate (feature) as a target variable and rest of predicates as
features for training a decision tree. Figure 1 depicts a fitted
decision tree model with target feature age. As it can be seen
each tree node (internal or leaf) partitions data. For example
the root node partitions data based on job or the second leaf
node from right partitions data based on job and gender. Based
on the second leaf node from right, the estimated age for a
person with job type 1.0 (this is a mapping index which is
explained in Section III-A2) and gender 0.0 is 16.30, however
based on this partitioning there is a person with age of >= 100
which is an anomaly in this scenario. Now this anomaly can
be explained as “the age value >= 100 is suspicious given
job = 1.0 and gender = 0.0” or after mapping indices to
the original values “the age value >= 100 is suspicious
given job=student and gender=female”. By this logic, the
fitted decision tree can be parsed and for each node an
SQL query can be extracted (e.g. SELECT * FROM data
WHERE job=1.0 AND gender=0.0). We consider these
queries as rules. Finally applying these extracted rules on the
dataset and applying anomaly detection technique on the target
values can yield explanations for the possible detected outliers.

a) Availability: To make the framework available for the
community, all the components of it have been integrated
into the SANSA ecosystem. The framework is fully available
for the community as an open-source GitHub repository [9].
b) Impact: ExPAD offers Semantic Web practitioners a tool

Fig. 2: System architecture high-level overview

to not only detect anomalies in their RDF dataset, but also
provide an explanation and improve the quality of the existing
dataset. Besides this, as it can handle huge RDF data, it can
be a suitable option for enterprise companies in the field of
energy and IoT to detect anomalous events in the RDFized
sensor data5. c) Usability: Although the framework is fully
documented but we also provided a tutorial and a sample in
Databricks to assist end-users and significantly decrease the
try-out barrier [9].

Figure 2 depicts the high-level system architecture overview
of ExPAD. Moreover, Table I lists configurable parts of the
framework. In the following, each step of the framework is
explained in detail based on Figure 2.

A. Components

1) Step 1: Reading Data: The first step of the pipeline is
reading and loading the RDF data. The output of this step will
be a Spark dataframe. ExPAD supports N-Triple and Turtle file
formats and the RDF data can reside in normal file systems
or Hadoop File System (HDFS).

2) Step 2: Feature Extractor: The output of the
first step is a dataframe with 3 columns which stores
⟨subject, predicate, object⟩, however, to be able to apply
any anomaly detection algorithm on the object part, the
dataframe should be vectorized (Prepositionalized). This steps
moves each predicate to a separate column and reshape the
dataframe accordingly. In this step we borrowed two integrated
approaches from DistAD to apply vectorization.

a) Pivoting/Grouping: A pivot is an aggregation where
one (or more in the general case) of the grouping columns has
its distinct values transposed into individual columns. Spark
provides a pivoting mechanism over dataframes.

b) Literal2Feature: Literal2Feature [29] transform a
given RDF dataset to a standard feature matrix by deep
traversing the RDF graph and extracting literals to a given
depth. It generates a SPARQL query which is executed by the
SANSA built-in SPARQL engine. The result of the SPARQL
query execution is the vectorized RDF dataframe.

Besides above mentioned approaches, in ExPAD we im-
plemented a new transformation pipeline entitled “Smart-
DataFrame”. SmartDataFrame not only reads the RDF data

5https://platoon-project.eu



into a dataframe, but also extract features based on objects
and after detection of data types, casts the literal to the
primitive data-types. This transformer converts all features
corresponding to their feature type into numeric representa-
tions. For example, non-categorical strings (e.g. URIs) are
transformed into the label indexer mapping or boolean-type
will be converted to {0, 1}. This transformation is necessary
to make the corresponding decision tree learning possible.
Listing 1 and 2 depicts a native RDF dataset featurized via
SmartDataFrame transformer:

dbr : Pe r son0 dbo : age ” 13 ” ˆ ˆ h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# i n t e g e r
dbr : Pe r son0 dbo : g en de r ” f a l s e ” ˆ ˆ h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# boo lean
dbr : Pe r son0 dbo : j o b dbr : S t u d e n t
dbr : Pe r son1 dbo : age ” 8 ” ˆ ˆ h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# i n t e g e r
dbr : Pe r son1 dbo : g en de r ” t r u e ” ˆ ˆ h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# boo lean
dbr : Pe r son1 dbo : j o b dbr : Teache r

Listing 1: Sample RDF data

3) Step 3: Decision Tree Learning: The third step of
the framework is fitting a distributed decision tree. For this
reason, one of the originally numeric columns (features) in the
dataframe will be considered as a target variable and the rest
of columns as features. We only consider the original numeric
features as target variables, because anomaly detection will
happen on only these values in the next steps, however, the
categorical ones will be involved as a feature in the decision
tree training process. The maximum depth of the tree is a
hyper-parameter, the deeper the tree goes, the more complex
explanation will be produced due to the number of reported
variables. This value is configurable by the end user. After the
training is done, the decision tree model will be ready to be
parsed in the next step.

4) Step 4: Rule Extractor: This component is responsible
for parsing the fitted decision tree model and for each tree
node (either internal node or leaf node) extracting an SQL
rule. The parsing process uses DFS (Depth First Search) [30]
to traverse the whole tree. The process keeps track of each
variable in every split and generates an SQL query for each
path. Consider the example at Figure 1, the generated rules
are shown in Listing 3.

SELECT * from df WHERE job <= 0.5
SELECT * from df WHERE job > 0.5
SELECT * from df WHERE job <= 0.5 AND gender <= 0.5
SELECT * from df WHERE job <= 0.5 AND gender > 0.5
SELECT * from df WHERE job > 0.5 AND gender <= 0.5
SELECT * from df WHERE job > 0.5 AND gender > 0.5

Listing 3: Generated SQL rules

Worth noting that, instead of SQL, SPARQL rules could also
be generated, however, as SQL is a native query language
implemented over Spark dataframe, the execution time of SQL
over dataframe is much shorter than running SPARQL on the
RDF data in SANSA.

5) Step 5: Anomaly Detection: In ExPAD, we have pro-
vided anomaly detection methods for only numerical literals.
For detecting anomalies in the numerical literals, we have
integrated IQR, MAD, and Z-Score from DistAD [28].

a) Interquartile Range: The Interquartile Range
(IQR) [15] technique is a statistical dispersion metric. It is
based on determining the first quartile (Q1), median (Q2),
and third quartile (Q3) of a numerical dataset. The difference
between Q3 and Q1 is the IQR. Outliers are data points that
are less than Q1−1.5×IQR and more than Q3+1.5×IQR.

b) Median Absolute Deviation: The Median Absolute
Deviation (MAD) [16] is a reliable measure of the variability
of a univariate sample of quantitative data. It is more resistant
to data set outliers than the standard deviation technique. The
MAD for a univariate data collection X1, X2, ..., Xn is defined
as the median of the absolute deviations from the median of
the data. So if X̃ = median(X) then:

MAD = b×median(|Xi − X̃|)

where b is a constant scaling factor that changes with the
distribution. Outliers are values in the input set X that are
more than X̃ + 2.5×MAD and less than X̃ − 2.5×MAD.

c) Z-Score: The number of standard deviations by which
the value of a raw score (i.e., an observed value or data point)
is above or below the mean value of what is being observed
or measured is referred to as the Z-Score. Raw scores that are
higher than the mean have positive standard scores, whereas
those that are lower than the mean have negative standard
scores. For example a Z-Score of 2.5 indicates that the data
point is 2.5 units away from the mean, indicating that it is an
outlier. The Z-score is defined as:

z − score =
x−mean

standarddeviation
6) Step 6: Explanation Generator: Now that rules have

been generated, one can apply each rule to the dataset to filter
(fetch cluster) the data. This is possible due to Spark SQL6

which is a Spark module for running SQL over dataframes.
The result will be a dataframe as well. The target column
will be selected to be checked for anomalies with an anomaly
detection algorithm. In case any anomaly is detected, it will be
reported alongside with the variables and their corresponding
values in the SQL rule. For clarification, consider example
at Figure 1. By applying SELECT * from df WHERE
job > 0.5 AND gender <= 0.5 and afterward run-
ning IQR over the filtered age values, one can see that the
value 100 will be detected as anomaly. This value can be
reported as “the age value 100 is suspicious given job = 1.0
and gender = 0.0” or after mapping indices to the original
values “the age value = 100 is suspicious given job=student
and gender=female”.

The final output of the framework is the list of anomalous
RDF triples and corresponding explanations that can be saved
as a normal file on a file system or on HDFS.

B. Implementation

As Scala7 is the programming language of SANSA, we
chose the same and its APIs in Apache Spark8 to provide the

6https://spark.apache.org/sql
7https://www.scala-lang.org
8https://spark.apache.org



+-----------+------------+---------------+-----------+--------------+
|s |age__integer|gender__boolean|job__url |job__url_index|
+-----------+------------+---------------+-----------+--------------+
|dbo:Person0|13 |0 |dbr:Student|0 |
|dbo:Person1|8 |1 |dbr:Teacher|1 |
+-----------+------------+---------------+--------------------------+

Listing 2: Transformed dataframe via SmartDataFrame

distributed implementation of ExPAD. Moreover, we benefit
from SANSA IO layer for reading/writing RDF data. Techni-
cally, ExPAD can be divided into the following steps 1) read
RDF data as a data frame with SmartDateFrame 2) generate
feature matrix 3) train decision tree 4) traverse and parse fitted
decision tree and generate rules 5) perform anomaly detection
6) generate explanation. Algorithm 1 depicts the framework
execution pipeline.

Algorithm 1 ExPAD Workflow
Data: G(E, V ) Knowledge Graph as a RDF serialization
Result: possible anomalies and their explanation
df = SmartDataFrame.read(G)
df = featureExtractor(df)
foreach column c ∈ df.cols do

if c is a numeric literal then
target = c
features = df.cols \ c
dt = DecisionTree(df, target, features)
rules = parse(dt)
foreach rule r ∈ rules do

filteredDF = df.select(r)
targetData = filteredDF (col = target)
anomalies = detectAnomalies(targetData)
if anomalies is not empty then

report(anomalies, r)

IV. EXPERIMENTAL RESULTS

In this section, two sets of experiments will be conducted
to analyze two particular aspects of ExPAD, effectiveness
and computational performance. In the first experiment, the
correctness of the extracted anomalies explanation will be an-
alyzed over different datasets and in the second experiment, we
will investigate the scalability of the framework. To the best of
our knowledge there is no other work to simultaneously detect
and explain anomalies on KGs via distributed computing stack.
Therefore, in this section we introduce multiple scenarios to
examine the quality of the ExPAD solely.

A. Dataset

To the best of our knowledge, there is no RDF dataset
bench mark for anomaly detection and especially for ex-
plainability. Moreover, authors in [28] reported that most of
the detected numeric outliers in DBpedia are found in the
date/time related values and the reason is that the extraction

tool can not always extract correctly the information related
to date/time. For example 198?-85 in Wikipedia9, parsed to
198ˆˆxsd:integer in DBpedia10. We should note that,
although this type of anomalies can be successfully detected
by ExPAD, however explaining them with respect to other
variables may not be informative due to independentness.
Therefore DBpedia can not be an adequate option for investi-
gation because it contains many independent predicates which
do not correlate with each other. To this end, and as there
is no adequate RDF dataset benchmark, three datasets have
been exploited. Engie-accident dataset11, Titanic dataset12,
and our generated synthetic dataset. Engie SA13 is a French
multinational electric utility company that operates in the fields
of energy transition, generation, and distribution, natural gas,
nuclear, renewable energy, and petroleum. The accident RDF
dataset contains data about ∼ 57K car accidents that occurred
in France in 2018 (such as geo-coordinate, weather condition,
...). Titanic dataset contains information about passengers of
the Titanic shipwreck. The dataset contains 12 features for 891
passengers. Beside this and to be able to have different size
of datasets, we implemented an RDF data simulator which
generates synthetic RDF graph. For the RDF data generator,
we consider Person class with 5 synthetic properties and
respective distribution listed in Table II.

B. Experiment A: Assessment of the detected Anomalies Ex-
planation

In this section, we analyze the detected anomalies and
explanations for all three mentioned datasets. A synthetic data
set with manually added anomalies, Engie accident dataset,
and RDFized version of Titanic dataset. For the synthetic data
we generated 100K triples with the mentioned distribution in
Table II. For the anomalies, we added 0.02% (= 20 cases)
anomalous data; 10 pregnant women with age ∈ [90, 100],
5 presidents with age ∈ [4, 10], and 5 students with age
∈ [70, 90]. The reason why we only added a few anomalous
cases is that anomalies should rarely happen, and in case
they occur frequently they can not be detected. It is worth
noting that the 5 generated predicates in the simulated data are
deliberately defined dependent (e.g. pregnancy is related to the
gender). Although adding other independent predicates (such
as weather condition) won’t cause any issue for the workflow,

9https://en.wikipedia.org/wiki/Steve Walters
10https://dbpedia.org/page/Steve Walters
11Can not be publicly published due to Intellectual Property concerns
12https://www.kaggle.com/c/titanic
13https://www.engie.com



TABLE I: ExPAD configurable components

Feature Options Comments

Feature Extraction Pivoting/Grouping Basic operation for extracting feature from RDF data
Literal2Feature[29] Sophisticated method for extracting features from RDF data

Decision Tree MaxDepth Maximum depth of the tree (nonnegative)
MaxBins Maximum number of bins used for discretizing continuous features

Anomaly Detection
Interquartile Range[15] Used for numeric values
Median Absolute Deviation[16] Used for numeric values
Z-score Used for numeric values

General verbose Boolean to generate logs
AnomalyListSize The minimum number of samples required for anomaly detection method

TABLE II: Predicates used for generating synthetic RDF graph for class Person

Predicate Value Type Example Distribution
id non negative integer {0,1,2,...} incremental starting from 0
gender boolean {male,female} 50% male, 50% female
job URI {Student,President} 50% student, 50% president
pregnant boolean {true,false} if male then false, if job=student then false, if job=president and age>55 then false, if

job=president and age<=55 then 40%
age positive integer {1,2,3,...} if job=student in [7,14], if job=president in [25,70]

however, our approach naturally (due to the nature of decision
tree algorithm) can not generate meaningful explanation for
the independent variables (a age of a person is not correlated
to the weather condition and therefore can not be explained
meaningfully via it).

In this scenario we set the maximum depth of tree to
two, used Literal2Feature (depth=1) for extracting features,
and used IQR for anomaly detection. Note that all of these
values are configurable for the end user. Moreover, in this
scenario, we only focused on the age predicate, although
ExPAD performs on all the numeric variables. Figure 3 depicts
the fitted decision tree on the 100K synthetic data with age
as the target variable.

For the accident dataset, we used Literal2Feature with
depth=5 for extracting features (due to the nested architecture
of RDF in this dataset), used IQR for anomaly detection, and
set the maximum depth of tree to two. Literal2Feature ex-
tracted 43 features from this dataset. In this case we executed
ExPAD on geo-coordinates of the accidents.

For the Titanic dataset, we used RDFizer [31] to transform
CSV data to RDF. It is beyond the scope of this paper to
explain how RDFizer works, however, it uses RDF Mapping
Language (RML)14 rules for transformation of (un)structured
data into RDF knowledge graphs. For this scenario we only
used the train dataset provided by Kaggle15. For feature
extraction we used pivoting approach, for anomaly detection
IQR has been used, and set the maximum depth of tree to two.

After applying ExPAD on all of three datasets, all the 20
cases from synthetic data, 9 cases from Titanic dataset, and
5 cases from accident dataset have been detected. Table III
shows some sample detected anomalies with the corresponding
explanation. It is worth noting that there is a positive corre-
lation between decision tree depth and the complication of

14https://rml.io/specs/rml
15https://www.kaggle.com/competitions/titanic/data?select=train.csv

Fig. 3: Trained decision tree with the target variable age

Fig. 4: Detected anomalies on the Accident Dataset

explanation (number of variable reported in the explanation).
Obviously as going deeper, the explanation may contain more
variables. Comparing the detected anomalies from Titanic
dataset with OutlierTree [7] results on the same dataset, re-
vealed that ExPAD detected the anomalies correctly. Moreover,
manual inspection of the detected anomalies in the accident
dataset, reveal that although accidents location in the dataset
are ‘France Métropole’, however, their geo-coordinates show
that they lay outside France, in Asia and eastern Europe
(Figure 4).



TABLE III: Sample of detected anomalies and their explanation

Dataset Anomaly Explanation
100k Synthetic age = 100 age = 100 is anomalous given pregnant = true

age = 80 age = 80 is anomalous given pregnant = false and job
= student

age = 5 age = 5 is anomalous given pregnant = false and job
= president

Titanic Fare = 0 Fare = 0 is anomalous given Pclass = 3 and SibSp = 0
Accident longitude = 50 longitude = 50 is anomalous given location=‘France’

TABLE IV: Synthetic dataset description

Dataset File Size #Triples
DS1 500MB 1M
DS2 2.6GB 5M
DS3 5.2GB 10M
DS4 26GB 50M
DS5 52GB 100M

C. Experiment B: Scalability
In this experiment we evaluate the scalability of ExPAD

by different data sizes and varying cluster processing setups.
To be able to have different size of datasets, we use the same
RDF data simulator explained earlier to generates big synthetic
RDF graphs. Table IV listed the generated datasets and their
characteristics (Worth to mention that the German DBpedia
size is 48GB). As running time of reading data from HDFS
is same for all the configuration, and as the scalability of
Literal2Feature and Pivoting has been intensively investigated
in [29] and [28] respectively, for these experiments, we neglect
the execution time of these components.

1) Scalability over number of cores: To adjust the dis-
tributed processing power, the number of available cores was
regulated. In this experiment, we selected DS3 (5.2GB) as a
pilot dataset and the number of cores was increased starting
from 22 = 4 up to 27 = 128. The experiments were carried
out on a small cluster of 4 nodes (1 master, 3 workers): AMD
Opteron(TM) CPU Processor 6376 @ 2300MHz (64 Cores),
256 GB RAM. Moreover, the machines were connected via
a Gigabit network. All experiments are executed three times
and the average value is reported in the results. Moreover, in
these experiments we set the maximum depth of tree to 2, used
pivoting for extracting features, and used MAD for anomaly
detection. Figure 5(a) shows the scalability over different
computing cluster setups. It is clear that increasing the com-
putational power horizontally, decreases the execution time.
Initially, doubling the number of cores reduces the execution
time by nearly a factor of two. However, by adding more cores,
the execution time only slightly decreases. This phenomenon
is caused by the overhead of moving data between nodes as
well as network latency. The maximum speed up is 5.1x.

2) Scalability over dataset size: To analyze the scalability
over different datasets, we fix the computational power to 32
cores and run the experiments for all datasets introduced in
Table IV. By comparing the run-time as shown in Figure 5(b),
we note that the execution time does not increase neither linear
nor exponentially. This behavior is due to the distribution
among available resources e.g. (memory) and partition size.
It can be seen that by increasing the dataset size from 500
MB to 52 GB (∼ 100 times bigger), the execution time is
almost only 19 times higher.

3) Scalability over number of features: For checking
anomaly in each feature, a decision tree should be trained,
therefore the complexity of ExPAD with respect to the number
of features is linear. However, to show how decision tree

training of ExPAD behaves when the data set dimensionality
increases, we added 1000 uninformative numeric features to
the DS3 dataset which are drawn from a Gaussian distribution.
Dealing with these random numbers can be much problematic
for decision trees. Also we fixed the computational power to
32 cores, max decision tree depth to 3, and set age as the target
variable. Figure 5(c) shows that increasing the dimensionality,
increases the running time almost linearly. This is happening
due to efficient implementation of decision tree in Spark. So
it can be seen the framework is able to cope with even with
the huge number of features.

V. CONCLUSION

In this paper, we introduced ExPAD, a generic, distributed,
and scalable framework for explainable numeric anomaly
detection in KGs. ExPAD is open-source, available on GitHub,
and integrated into SANSA Stack. Inspired by OutlierTree,
ExPAD generates human-readable explanations for outlier
identification, by traversing supervised decision tree splits.

As ExPAD operates on univariate data, it may not be
able to detect all multi-dimensional outliers (as opposed to
other methods such as Isolation Forest that consider multiple
variables simultaneously), however, it generates meaningful
explanations for the dependent features. Moreover, our exper-
iments show that the framework by detecting and explaining
abnormalities can help in enhancing the data quality in KGs.
Furthermore, our results indicate that ExPAD can be success-
fully scaled across a cluster of nodes for very large data sets.

In the future, we intend to work on explainable categorical
anomaly detection in KGs. Moreover, in multivariate anomaly
detection scenarios, it is important to be able to explain why
a specific data point is considered as an anomaly.
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