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Abstract—Large Scale Global Optimization (LSGO) is interest-
ing for its applications in machine learning, e.g. in deep learning
or knowledge graph embeddings. Evolutionary algorithms (EA)
have been found efficient in solving complex optimization prob-
lems. However, the performance of conventional EAs degrades
with the increasing number of decision variables due to the lack
of scalability. This paper proposes a scalable, parallel, distributed
and hybrid EA named Distributed Scalable Shade-BatScalable
Shade Bat (DistSSB) to solve LSGO problems. DistSSB is
inspired by the exploration capability of the SHADE algorithm
and exploitation feature of the Bat algorithm (BA). To achieve
scalability, DistSSB is implemented using the popular distributed
in-memory framework, Apache Spark. DistSSB distributes its
population into multiple sub-populations using the island model.
Each sub-population is independently evolved using SHADE
or BA. After the migration interval, the best solutions are
broadcasted employing the mesh topology. We have compared
the scalability, efficiency, and efficacy of DistSSB with SHADE-
ILS (CEC-2018 Winner) and GL-SHADE algorithm on the CEC-
2013 LSGO benchmark function suite.
For most functions, DistSSB has obtained better optimization
results in lesser execution time as compared to SHADE-ILS and
GL-SHADE. We have tested and shown the scalability of DistSSB
for up to ”one million” dimensions, whereas SHADE-ILS and
GLSHADE fail to scale up for larger problems.

Index Terms—LSGO, Apache Spark, Differential Evolu-
tion, SHADE-ILS, GL-SHADE, Evolutionary Computation, Dis-
tributed, Parallel, Scalable

I. INTRODUCTION

Real-life optimization problems are becoming increasingly
complex due to an increase in the number of decision vari-
ables as a result of digitalization. The traditional EA, i.e.,
Differential Evolution (DE) [1], Particle Swarm Optimization
(PSO) [2], and Genetic algorithm (GA) [3] show promising
results for relatively low dimensional problems. For high
dimensions, EA suffers from performance bottleneck (slow
convergence speed and convergence to local optima), termed
as the curse of dimensionality [4]. Therefore it is important to
develop distributed and scalable techniques for Large Scale
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Global Optimization (LSGO). LSGO problems have arisen
in many fields, including but not limited to engineering [5],
machine learning, resource scheduling, and vehicle routing in
large scale traffic network [6], business intelligence, & data
mining [7]. Knowledge Graph Embedding (KGE) modelling
is a large scale optimization problem where large scale knowl-
edge graphs like DBpedia (2 million entities and 10 million
facts), Wikidata (1.5 million entities and 3 million facts), and
Google KG (500 million entities and 3.5 billion facts) are
transformed to multidimensional matrices. KGE is used to
find missing, or new facts in the knowledge graphs [8]. Deep
transfer learning is another application area to optimize Neural
Network weights and then to use these pre-trained networks
for new problems. Keras’s VGG16, VGG19, NASNetLarge,
and EfficientNetB7 are few large scale networks that contain
13.8 million, 14.3 million, 8.8 million, and 6.6 million decision
variables respectively [9].

A problem is categorized as an LSGO problem [10], if
the number of decision variables increases beyond 1000. The
LSGO problems can range from fully separable problems
to non-separable problems, where separability describes the
extent to which a problem can be divided into sub-problems,
such that a fitness function can evaluate them independently.
A problem is fully separable if all its variables are independent
of each other [11].

The established LSGO approaches have been catego-
rized [12] as Cooperative Co-evolution (CC) and Non-
Cooperative Co-evolution (NCC). In CC, a high dimensional
problem is divided into low dimensional sub-problems, making
them capable of being solved using conventional EA. Sub-
problems maintain separate sub-populations to ensure diver-
sity [13]. Although CC has been used in different meta-
heuristics (e.g. Ant colony optimization (ACO) [14], GA [15],
DE [16] and PSO [17]) but the performance of CC changes
abruptly in case of complex and overlapping sub-problems.
Additionally, CC is sensitive to the grouping strategy. In NCC,
a problem in never decomposed and hence doesn’t require a
grouping strategy. The problem is solved without requiring
detailed information about the decomposition. This makes
NCC a suitable choice for many overlapping and complex
optimization problems. NCC techniques include SHADE with
Iterative Local Search (SHADE-ILS) [5], adaptive population978-1-7281-8393-0/21/$31.00 ©2021 IEEE



differential evolution with dual control strategy [18], enhanced
adaptive differential evolution algorithm [7], and SHADE-SPA
memetic framework [19].

In this article, we have proposed a NCC technique, Dis-
tributed, Scalable Shade BAT (DistSSB). DistSSB is a par-
allel and scalable approach. DistSSB combines Success-
History based parameter Adaptation for Differential Evolution
(SHADE) [20] and Bat algorithm (BA) [21] to achieve adept
exploration and exploitation, respectively. Using the Island
model [22], we have divided the population into multiple sub-
populations where each sub-population is evolved in parallel.
SHADE is used for exploration in a few partitions, whereas
BAT is used for exploitation in the remaining partitions. The
performance of DistSSB is tested on the CEC-2013 benchmark
function suite [10], and the results have been found better
from SHADE-ILS and GL-SHADE for most functions with
improved execution time for 1000 and 2000 decision variables.
To verify the scalability, we have compared DistSSB, SHADE-
ILS, and GL-SHADE on one million dimensions for f12
and found that SHADE-ILS, and GL-SHADE are unable to
scale up to this problem size while DistSSB shows convincing
results. To the best of our knowledge, DistSSB is the first, open
source algorithm that addresses the problem of scalability.

The rest of the paper is organized as follows. In section
II preliminary concepts are discussed. Section III covers the
literature review. In section IV, design and implementation
of DistSSB is covered. Experimental setup and results are
discussed in section V and finally, the conclusion and future
work is discussed in section VI.

II. BACKGROUND

A. Apache Spark

The Apache Spark is an open-source, in-memory unified
cluster computing framework and an analytic engine that has
gained popularity in recent years due to its fast, in-memory
data processing capability [23]. Spark is useful for iterative
and interactive data processing. In Spark core API, high-level
abstraction is provided using RDD to distribute data across the
cluster for further processing. The driver node distributes data
among available worker nodes and is responsible for the task
scheduling and monitoring of worker nodes. Each worker node
receives one or more partitions of the RDD.RDD has two types
of operations. (i) Transformations (ii) Actions. Transforma-
tions perform a task on an existing RDD to create a new RDD.
They are in fact logical execution plans that don’t materialize
the RDD. Actions materialise the execution by creating a new
RDD. The actions result in network communication and may
become a performance bottleneck if not used carefully.

B. Island Model

Island model is a population distribution paradigm [24] that
divides the initial population into multiple sub-populations
(islands). Each island executes an algorithm independently.
Depending on the Migration Rate (Mr), islands share solutions
with other islands after specified Migration Interval (Mi).
Migrated solution(s) replace the worst solutions on each island.

The island model enhances algorithms’ global search ability by
exploring search space in multiple trajectories and improving
the execution (convergence) time.

C. BAT Algorithm

Yang and Xin-She proposed a novel meta-heuristic based
Bat algorithm (BA) in 2010 [21]. BA uses the echolocation
behavior of microbats to find the optimal solution. Following
control parameters are used in BA.
• N : Population size
• P : Actual population comprising N bats.
• xi: Position of Bati
• vi : Velocity of Bati
• fmax

r & fmin
r : Upper and lower frequency bounds

• ε: Bandwidth for the calculation of a reasonable gradient.
• r: Pulse rate that determines the exploitation rate.
• it : Current iteration
• Ai : Loudness rate of Bati
• Â : Mean loudness of all bats
• r0i : Initial pulse rate of Bati
• α & γ : The two constant parameters of range [0,1] used to

update A and r

The velocity vi (Eq. 2) of Bati is influenced by a random
frequency fr (Eq. 1). New bat position xi can be calculated
using Eq. 3.

fr = fminr + (fmaxr − fminr ) ∗ rand[0, 1] (1)

vi = vi + (xi − xbest) ∗ fr (2)

xi = xi + vi (3)

Local search is part of the exploitation process. The new bat
position is calculated using a random walk around the xbest

position using Eq. 4.

xnewi = xbest + εÂ (4)

xi is replaced by xnewi if fitness of xnewi is better than the
fitness of xi and loudness is less than U [0, 1]. xbest is replaced
by xnew if fitness of xnew is better than xbest. xi, ri, and Ai
are updated using Eq. 5 and Eq. 6 respectively. algorithm 1
presents the pseudo-code of the bat algorithm.

ri = r0i ∗ (1− e(−γ∗it)) (5)

Ai = αAi (6)

D. Differential Evolution (DE)

DE is a population-based EA, designed for solving con-
tinuous numerical optimization problems [1], [25]. The three
control parameters of DE are population size (N), crossover
rate (CR), and scaling factor (F ). Mutation, crossover, and
selection are the three commonly used DE operators. A new
candidate (donor) solution (vd) is generated by applying the
mutation operator. In the crossover phase, the donor solution
interacts with the currently selected candidate solution xi to
generate a trail vector ut. In the selection phase fitness of
ut is compared with xi. ut replaces xi, if f(ut) is better
than f(xi). DE/rand/1/bin is the classical mutation strategy



Algorithm 1 Bat Algorithm
1: Initialize the population P
2: while stopping criteria do
3: for xi: 1 to N do
4: Calculate fr using Eq. 1
5: Calculate vi using Eq. 2
6: Find xi using Eq. 3
7: if rand[0, 1] ≥ ri then
8: xnew

i ← Perform local search using Eq. 4
9: end if

10: if rand[0, 1] ≤ Ai & f (xnew
i ) ≤ f(xi) then

11: xi = xnew
i

12: Update ri using Eq. 5
13: Update Ai using Eq. 6
14: end if
15: end for
16: end while

of DE. Here rand is base vector, 1 specifies the number of
difference vector(s), and bin is the recombination type. In DE
two recombination types (binomial (bin) and exponential (exp)
are commonly used.

E. Success-History based parameter Adaptation for Differen-
tial Evolution (SHADE)

Among many variants of DE, SHADE has gained much
popularity as it computes the control parameters (crossover
CR and scaling factor F ) dynamically [20], based on the
history. It maintains a history data structure H that contains N
entries for crossover (MCR) and scaling factor (MF ). Initially,
all values of H are set to a constant value, i.e., 0.5. A random
index ri is selected from [1 : H] and is used to compute values
of both control parameters Fi and CRi in each iteration. Fi
is calculated at line 8 in algorithm 2 using Eq. 7.

Fi = randc(MF,ri , 0.1) (7)

Algorithm 2 SHADE
1: Initialize Population (P ), Memory (A′) and History (H)
2: while Termination Criteria do
3: for xi : 1 to N do
4: Calculate parameters Fi and CRi and by selecting index

ri randomly from [1 : H] using Eq. 7 and Eq. 8
5: Generate trail vector ut

6: xr1 ← rand(P )
7: xr2 ← rand(A′)
8: xbest ← [P,N ∗ p]
9: vdi = xi+Fi ∗ (xbest−xi)+Fi ∗ (xr1−xr2) using Eq. 7

10: Generate trail vector ut
i =

{
vdi if rand[0, 1] < CRi

xi otherwise
11: if f(ut

i) ≤ f(xi) then
12: xi = ut

i

13: Update ((MCR),(MF )) based on Fi and CRi

14: end if
15: end for
16: end while

CRi = randn(MCR,ri , 0.1) (8)

CRi in algorithm 2 at line 4 is calculated using Eq. 8. Fi
is selected randomly using Cauchy distributions, and CRi is
selected using uniform (normal) distribution. The upper limit
for selection of Fi and CRi is 0.1.

Instead of selecting the fittest individual as the best, SHADE
considers N ∗ p fittest solutions and selects a random solution
from them as the best solution xbest used at line 8 in algorithm
2. The value of p is calculated using Eq. 9.

p = rand[pmin, 0.2] (9)

p is random number between pmin and 0.2. Value of pmin
is set to 2/N, which guarantees that at least two fittest solutions
are selected. 0.2 is the highest value for p as suggested in [26].
SHADE maintains an external archive called memory (A′) that
is used for the mutation process. A candidate vector xi that is
worse than the trial vector ut is placed in A′. Pseudo code of
SHADE is given in algorithm 2.

III. RELATED WORK

Evolutionary algorithms have been used for optimization
from last few decades and several parallel and distributed mod-
els have been proposed. With the advancements in distributed
and scalable tools to handle big data, like Apache Hadoop and
Apache Spark, researchers proposed implementations using
these cloud computing frameworks. In this paper, we only
cover the implementations covering the big data frameworks,
and winners of the LSGO competitions.
Spark based SparkPSODE [27] combined the dominating
features of both PSO and DE where individual’s position and
velocity was updated using PSO while mutation, crossover,
and selections operators were adopted from DE. Authors
did not address the complex functions with rotations or
overlapping factors. Increasing partitions in Spark results in
more computational time. This could be improved by utilizing
proper computational power of Spark framework. Fahad et
al., [28] proposed a scalable GA using Apache Spark named
(S-GA) for high dimensional problems. They have used the
Island model to split the population into sub-populations.
Results have shown that an increase in the number of islands
increased the number of migrants causing higher network
traffic, and increased execution time of S-GA. However, this
resulted in faster convergence in terms of iterations. They
have used five simple functions for evaluations and did not
cover the complex optimization problems. AlJame et al., [29]
proposed an Apache Spark implementation of Whale Opti-
mization algorithm (Spark-WOA). Spark-WOA materialized
RDD containing evolved solutions after each iteration. Spark-
WOA broadcasted the best solution after each iteration to all
the partitions. Frequent materialization of RDD is a bottleneck
that resulted in network communication and overall increased
execution time. Authors have evaluated their technique on
four simple benchmark functions for upto seventy (70) iter-
ations only, whereas the number of decision variables was
missing. Spark-based DE with grouping topology (SgtDE)
was proposed by He et al., [30] to solve LSGO. The initial
population was divided into fifteen sub-populations and three



equal groups. Ring topology was used for migration among
the same group’s islands, while mesh topology was used for
communication between the groups. SgtDE used a population
size of 300. Although Apache Spark is a cluster computing
framework, SgtDE was tested on a single machine only.

SHADE [31], a variant of DE, maintained history through
the memory of Crossover Rate (MCR) and scaling Factor
(MF ). Additionally, it preserved a collection of Crossover
Rate (CR) and scaling Factor (F) values that have performed
well in the past. These values helped producing new (CR,
F) pairs by sampling the domain of the parameters adjacent
to one of these preserved pairs. SHADE showed a limited
evaluation on 100 population size, 30 decision variables, and
3.0∗105 fitness function evaluations. Also, the execution time
for convergence has not been discussed. Oscar and Carlos
proposed a Global and Local search using SHADE (GL-
SHADE) [32] that divided the population into two parts.
SHADE algorithm was executed on one part for exploration,
while eSHADEls was executed on other part for exploitation.
After certain iterations, both sub-populations shared their best
individuals. The GL-SHADE was evaluated on the CEC-2013
benchmark function suite, and it achieved better results. GL-
SHADE was tested with 100 population size and the execution
time was not reported. SHADE-ILS [5] combined the explo-
ration power of SHADE with the exploitation power of local
search strategies for optimization. SHADE-ILS adaptively
adjusted its parameters, and the mutation operator selected
the best variable among p best solutions. With a population
size of 100, SHADE-ILS obtained good results for CEC-2013
benchmarks functions and was selected as the winner of CEC-
2018. An Efficient Recursive Differential Grouping for Large-
Scale Continuous Problems (ERDG), a CC-based approach,
was proposed by Yang et al. [33]. Their focus was to reduce
the computation cost by examining historical information used
for interrelationship examination and reducing the function
evaluation. They have used CEC 2013 benchmark functions
for evaluation. SHADE-ILS performed better than ERDG on
half of the functions. Cooperative Co-evolution with Recursive
Differential Grouping (CC-RDG3) [34] has comparable results
to SHADE-ILS. CC-RDG3 is a CC-based technique where the
focus is on division of dimensions.

In summary, most of the examples discussed above do
not target the scalability and handle problems with large
dimensions, even though some of them used big data frame-
works. For the comparison, we have selected SHADE-ILS,
a NCC algorithm, as it is the winner of CEC-2018 [5] and
GL-SHADE [32] as it has obtained better results for some
of the functions compared to SHADE-ILS using CEC-2013
benchmark function suite [10]. Although CC-RDG3 is the
winner of CEC-2019, we have not selected it for comparison
as it is a CC based technique that divides the dimensions and
decomposes the overlapping problems, whereas in NCC based
technique the whole population is decomposed into multiple
groups and hence these methods are not directly comparable.

IV. DISTRIBUTED SCALABLE SHADE-BAT (DISTSSB)
In this section, we detail the proposed Scalable Shade Bat

(DistSSB) algorithm. DistSSB uses island model by dividing
the population among islands. This helps in achieving speedup
and avoiding stagnation through solution sharing among is-
lands. The SHADE algorithm has a strong exploration capa-
bility and helps finding new solutions in unexplored search
space, whereas, BA algorithms offers an intensive exploitation
strategy. Therefore DistSSB combines SHADE (for explo-
ration) and BA (for exploitation) for value-added optimization.
Inspired from center-based sampling strategy [35], we select
the m fittest solutions and calculate their centroid as the best
solution, as given in Eq. 10 for islands utilizing BA. It has been
statistically proven that there is a higher chance of finding an
unknown optimal solution when initial solutions are closer to
the center of the search space and this chance increases with
increasing number of dimensions [36].

xbest =
xbest1 + xbest2 + ...+ xbestm

m
(10)

Additionally, we have proposed a local search operator as
explained in algorithm 1 for BA that helps in fast convergence
by maintaining diversity as given in Eq. 11. Eq. 4 is replaced
by Eq. 11 in algorithm 1 to avoid premature convergence.

xnew = xbest + εA(xbest,n − xk,n) (11)

Where k is a random number between [0, N − 1] and n is
number between [0, d−1] such that k 6= n where d represents
dimensions. The main steps of the DistSSB are given in
algorithm 3. DistSSB creates RDD from the population of
random solutions.

Algorithm 3 Distributed Scalable SHADE Bat
1: Initialize Population (P ), Migration Rate (Mr), Migration Inter-

val (Mi)
2: population = sc.parallelize (P )
3: while stoppingCriteria do
4: bestSolutions = population.mapPartitionsWithIndex { ( index,

iterator ) {
5: popData = loadData()
6: popData = popData.eliminateWeakSolutions()
7: popData = broadcastedSol.union(popData)
8: for t : 1 to Mi do
9: if index % 2 == 0 then

10: SHADE(popData)
11: best = selectRandom(popData.take(Mr))
12: end if
13: if index % 2 == 1 then
14: BA(popData)
15: best = findCentroid(popData.take(Mr))
16: end if
17: end for
18: save.popData.iterator
19: best.iterator
20: } } . collect()
21: broadcastedSol = sc.broadcast(bestSolutions)
22: end while

The code within mapPartitionsWithIndex (line 5-19) is
evolved in a parallel fashion on multiple partitions. It is an



internal feature of Spark that returns a new RDD by applying
a function to each partition in distributed manner. Within
the parallel execution, half of the sub-populations (partitions)
are evolved using BA (line 14-15) while others are evolved
using SHADE (line 10-11). After each migration interval, the
best solution(s) from each partition (line 19) are collected
and placed in bestSolutions (line 4). bestSolutions are then
broadcasted to other partitions (line 21). Each partition at the
start of the next migration interval picks all the broadcasted
solutions and uses them to replace its weakest solutions (line
6-7). This creates a mesh topology between the partitions. The
evolved RDD (popData) with replaced and evolved solutions
is not materialized throughout the DistSSB execution. This
RDD remains in-memory until the next broadcast. In-memory
execution reduces the network communication between worker
and master nodes and decreases the overall execution time. The
evolved population at each partition is saved temporarily on
the local (partition) file system after every migration interval
(line 18). The saved popData and bestSolutions are retrieved
again at the start of the next migration interval (line 5). The
algorithm terminates when stopping criteria is met.

V. EXPERIMENTAL SETUP

To test and evaluate the performance of the DistSSB, we
have used the Large Scale Global Optimization benchmark
functions suite and the experimental conditions used in CEC-
2013 [10]. CEC benchmark contains 15 functions with 1000
decision variables except for F13 and F14 where decision
variables are 905 due to overlapping factors. These benchmark
functions are divided into fully separable, partially separable,
overlapping, and non-separable functions. We briefly discuss
these functions below, and additional details can be found
in [10], [26].

1) Fully separable functions: (f1− f3)
2) Partially separable functions

a) with a separable subcomponent: (f4− f7)
b) with no separable subcomponent: (f8− f11)

3) Overlapping Functions: (f12− f14)
4) Non-separable Functions: (f15)

We have tested all CEC-2013 benchmark functions upto 2,000
dimensions (2000D) while tested a few functions for 5.0 ∗
104 dimensions. To verify the scalability of DistSSB we have
evaluated f12 for 106 dimensions. Table I shows the parameter
settings of DistSSB. Maximum number of function evaluations
are 3.0 ∗ 106 and VTR is 0.0. All the results are reported as

TABLE I
PARAMETER SETTINGS FOR DISTSSB

Parameter Value Parameter Value
Population size (NP ) 103 ε 0.003

Number of Islands (In) 10 r0i 0.1
Migration Interval (Mi) 2 ∗ 104 α , γ 0.95

Migration Rate (Mr) 1 CR, F 0.95, 0.55

average of 25 executions against each configuration. In Table
I parameters for BA (ε, r0i , α and γ) are initialized as in [22]

TABLE II
DISTSSB, GL-SHADE, AND SHADE-ILS FITNESS COMPARISON

f Details 1000D 2000D
DistSSB GL- SHADE- DistSSB GL- SHADE-

SHADE ILS SHADE ILS

f1

Best 1.83E-05 3.07E-10 0.00E+00 4.48E-08 1.17E+00 4.76E-27
Median 2.19E-02 5.38E-06 0.00E+00 4.06E-03 1.92E+00 6.66E-25
Worst 4.79E-01 8.71E-05 8.81E-03 1.20E-01 4.68E+00 2.73E-23
Mean 1.52E-01 1.32E-05 1.48E-03 3.00E-02 2.32E+00 5.85E-24
StDev 2.08E-01 2.65E-05 2.94E-03 5.15E-02 1.43E+00 1.20E-23
P-Value 2.12E-04- 1.50E-03- 1.57E-04+ 1.57E-04-

f2

Best 4.69E+02 0.00E+00 9.08E+02 7.26E+02 1.49E-01 9.18E+02
Median 5.07E+02 1.05E+00 1.09E+03 1.63E+03 2.83E-01 4.92E+03
Worst 6.03E+02 4.97E+00 1.30E+03 8.53E+03 9.24E-01 6.77E+05
Mean 5.18E+02 1.89E+00 1.11E+03 3.32E+03 4.13E-01 1.41E+05
StDev 4.29E+01 2.15E+00 1.89E+02 3.34E+03 3.03E-01 3.00E+05
P-Value 1.57E-04- 1.570E-04+ 1.57E-04- 2.33E-02+

f3

Best 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.02E+01 2.03E+01
Median 2.00E+01 2.01E+01 2.01E+01 2.00E+01 2.05E+01 2.07E+01
Worst 2.02E+01 2.02E+01 2.02E+01 2.00E+01 2.05E+01 2.07E+01
Mean 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.04E+01 2.06E+01
StDev 7.04E-02 8.38E-02 6.07E-02 0.00E+00 1.64E-01 2.23E-01
P-Value 2.46E-04+ 4.59E-03+ 1.57E-04+ 3.41E-03+

f4

Best 2.54E+08 1.72E+08 8.90E+09 2.58E+09 1.50E+10 3.97E+10
Median 4.09E+08 7.30E+08 1.73E+10 3.84E+09 2.42E+10 9.07E+10
Worst 5.42E+08 1.06E+09 2.16E+10 6.26E+09 3.78E+11 1.68E+11
Mean 3.99E+08 6.84E+08 1.62E+10 4.17E+09 9.36E+10 9.57E+10
StDev 1.05E+08 2.74E+08 5.40E+09 1.50E+09 1.59E+11 4.60E+10
P-Value 1.56E-02+ 1.570E-04+ 1.57E-04+ 1.57E-04+

f5

Best 1.58E+06 1.04E+06 1.72E+06 2.49E+06 1.42E+06 1.71E+06
Median 1.80E+06 1.17E+06 1.99E+06 5.23E+06 3.07E+06 4.18E+06
Worst 2.86E+06 1.48E+06 2.23E+06 2.73E+07 1.04E+07 6.20E+06
Mean 2.02E+06 1.18E+06 2.02E+06 9.19E+06 4.19E+06 4.22E+06
StDev 3.73E+05 1.14E+05 2.25E+05 1.03E+07 3.57E+06 1.68E+06
P-Value 1.57E-04- 4.96E-01= 1.51E-01- 2.84E-02-

f6

Best 1.00E+06 1.04E+06 1.02E+06 1.02E+06 1.01E+06 1.02E+06
Median 1.01E+06 1.05E+06 1.04E+06 1.04E+06 3.58E+06 3.45E+06
Worst 1.02E+06 1.06E+06 1.04E+06 1.07E+06 7.24E+06 6.54E+06
Mean 1.01E+06 1.05E+06 1.04E+06 1.04E+06 3.48E+06 3.35E+06
StDev 7.89E+03 7.38E+03 8.58E+03 1.552E+04 2.45E+06 2.02E+06
P-Value 1.57E-04+ 5.07E-04+ 3.61E-03+ 1.40E-02+

f7

Best 1.43E+04 4.90E+05 9.27E+06 2.40E+07 2.29E+08 8.24E+07
Median 3.87E+04 5.49E+05 9.79E+06 3.77E+07 4.54E+08 2.92E+08
Worst 6.78E+04 6.25E+05 2.49E+07 6.27E+07 7.06E+08 5.42E+08
Mean 4.16E+04 5.47E+05 1.17E+07 4.07E+07 4.83E+08 3.08E+08
StDev 1.95E+04 4.20E+04 4.78E+06 1.33E+07 1.94E+08 1.73E+08
P-Value 1.57E-04+ 1.57E-04+ 1.57E-04+ 1.57E-04+

f8

Best 2.84E+10 6.11E+12 4.04E+13 1.42E+13 5.27E+13 1.83E+14
Median 5.16E+10 7.10E+12 3.39E+14 2.57E+13 1.93E+15 2.35E+15
Worst 6.26E+10 7.40E+12 3.28E+14 3.85E+13 8.92E+15 6.71E+15
Mean 5.26E+10 7.40E+12 3.28E+14 2.57E+13 1.93E+15 2.35E+15
StDev 2.65E+10 9.65E+11 1.83E+14 8.65E+12 3.23E+15 2.42E+15
P-Value 1.57E-04+ 1.57E-04+ 1.57E-04+ 1.57E-04+

f9

Best 2.25E+08 2.65E+08 1.83E+08 5.71E+08 1.02E+09 4.65E+08
Median 2.55E+08 3.55E+08 1.94E+08 6.77E+08 1.58E+09 6.79E+08
Worst 2.70E+08 5.25E+08 2.20E+08 8.01E+08 4.26E+09 9.01E+08
Mean 2.54E+08 3.65E+08 1.98E+08 9.13E+07 9.31E+07 9.27E+07
StDev 1.44E+07 9.68E+07 1.55E+07 8.51E+07 1.23E+09 1.49E+08
P-Value 1.50E-03+ 1.57E-04- 1.57E-04+ 6.70E-04+

f10

Best 9.05E+07 9.18E+07 9.15E+07 9.02E+07 8.60E+07 8.81E+07
Median 9.06E+07 9.29E+07 9.24E+07 9.15E+07 9.29E+07 9.16E+07
Worst 9.19E+07 9.08E+07 9.30E+07 9.20E+07 9.83E+07 9.98E+07
Mean 9.07E+07 9.28E+07 9.24E+07 9.13E+07 9.31E+07 9.27E+07
StDev 2.35E+05 5.68E+05 5.71E+05 6.33E+05 4.29E+06 4.01E+06
P-Value 1.57E-04+ 1.57E-04+ 5.21E-01+ 7.91E-01+

f11

Best 5.71E+06 9.16E+11 2.17E+08 9.49E+07 2.37E+12 1.08E+10
Median 9.17E+06 9.32E+11 3.03E+08 4.58E+08 4.78E+12 3.04E+10
Worst 1.70E+07 9.44E+11 4.13E+08 6.84E+08 7.86E+12 6.84E+10
Mean 9.99E+06 9.31E+11 2.92E+08 4.07E+08 4.95E+12 3.40E+10
StDev 3.95E+06 1.15E+10 5.29E+07 2.00E+08 1.79E+12 1.80E+10
P-Value 1.57E-04+ 1.57E-04+ 1.57E-04+ 1.57E-04+

f12

Best 1.81E+03 2.90E+01 2.18E+02 3.10E+03 9.27E+01 1.01E+03
Median 2.06E+03 1.20E+02 5.95E+02 4.63E+03 3.53E+03 1.20E+03
Worst 2.46E+03 2.52E+02 6.86E+02 5.82E+03 9.79E+03 4.65E+03
Mean 2.09E+03 1.25E+02 4.96E+02 4.48E+03 4.31E+03 1.97E+03
StDev 2.05E+02 7.78E+01 1.67E+02 9.98E+02 3.32E+03 1.35E+03
P-Value 1.57E-04- 1.57E-04- 4.06E-01= 1.94E-03-

f13

Best 4.05E+06 4.13E+08 4.47E+08 1.91E+09 1.63E+10 1.64E+09
Median 6.61E+06 4.44E+08 5.20E+09 3.19E+09 3.18E+10 8.45E+09
Worst 8.98E+06 4.69E+08 5.50E+09 4.70E+09 5.38E+10 9.98E+09
Mean 6.63E+06 4.42E+08 3.82E+09 3.22E+09 3.29E+10 7.37E+09
StDev 1.4E+06 1.62E+07 2.12E+09 8.27E+08 1.32E+10 2.95E+09
P-Value 1.57E-04+ 1.57E-04+ 5.06E-03+ 3.64E-01+

f14

Best 6.63E+06 5.58E+07 1.13E+10 2.58E+07 2.52E+10 2.76E+10
Median 7.58E+06 8.78E+07 1.68E+10 3.08E+08 4.35E+10 4.97E+10
Worst 8.56E+06 9.03E+07 2.35E+10 4.26E+08 7.29E+10 8.31E+10
Mean 7.60E+06 7.94E+07 1.66E+10 2.27E+08 4.57E+10 5.34E+10
StDev 6.96E+05 1.45E+07 5.24E+09 1.76E+08 1.74E+10 2.03E+10
P-Value 1.57E-04+ 1.57E-04+ 1.57E-04+ 1.57E-04+

f15

Best 2.89E+06 1.01E+07 7.28E+06 1.53E+07 1.93E+08 8.54E+06
Median 3.09E+06 1.37E+07 8.85E+06 3.29E+07 3.19E+08 7.02E+07
Worst 3.38E+06 1.59E+07 1.67E+07 7.17E+07 5.38E+08 9.81E+07
Mean 3.09E+06 1.35E+07 1.04E+07 3.81E+07 3.58E+08 6.15E+07
StDev 1.46E+05 1.99E+06 3.40E+06 2.05E+07 1.32E+08 3.14E+07
P-Value 1.57E-04+ 1.57E-04+ 1.57E-04+ 3.26E-01+

+ / = / - 11 / 0 / 4 11 / 1 / 3 12 / 1 / 2 12 / 0 / 3



while two control parameters (CR, F) of SHADE are
set as suggested in [5]. All the DistSSB experiments are
performed on a three-node cluster: DELL PowerEdge R815,
2x AMD Opteron 6376 (64 Cores), 256 GB. RAM, 3 TB
SATA RAID-5 with spark-2.1.0 and Scala 2.11.8. GL-SHADE
and SHADE-ILS experiments have been performed on Google
Cloud (12GB RAM) that is GPU enabled.
The source code1 of DistSSB using Scala and Apache Spark
framework is available on github.

A. Optimization

The optimization results of DistSSB are compared with
GL-SHADE and SHADE-ILS. For 1000D, DistSSB has
obtained better convergence as compared to SHADE-ILS for
eleven functions and performed equivalent on one function
while SHADE-ILS performed better for f1, f9,& f12.
When compared to GL-SHADE, DistSSB performed better
for eleven functions, while GL-SHADE performed better on
f1, f2, f5,& f12.

For 2000D, DistSSB’s performance improved and it con-
verged better than SHADE-ILS on twelve functions, while
SHADE-ILS is better for f1, f5,& f12. In comparison to
GL-SHADE, DistSSB performed better on twelve functions,
equal on one function while GL-SHADE performed better
for f2,& f5. Table II shows a comparison of DistSSB,
GL-SHADE and SHADE-ILS on 1000D and 2000D with a
maximum of 3 ∗ 106 function evaluations.

Fig. 1. Execution time of DistSSB, GL-SHADE, and SHADE-ILS on 1000D

This can be observed that DistSSB has performed better
for majority of functions on high dimensions. We have used
Wilcoxon rank sum test to analyze the accuracy of results
using significance level of 0.05. The last row of Table II
indicates the number of functions for which DistSSB is better
+, worse −, or equal = to the compared algorithms. Table III,
shows the average ranking of algorithms based on friedman
statistical ranking test. DistSSB has the smallest mean rank
that reflects DistSSB is better than GL-SHADE and SHADE-
ILS.

1https://github.com/HajiraJabeen/SparkOP

Fig. 2. Execution time of DistSSB, GL-SHADE, and SHADE-ILS on 2000D

B. Execution Time of DistSSB

The execution time of SHADE-ILS, GL-SHADE, and
DistSSB is measured using system clock time. Time compari-
son is shown in Figure. 1 and Figure. 2 for 1000D, and 2000D
respectively. DistSSB outperformed SHADE-ILS on all func-
tions for both dimensions. While comparing with GL-SHADE
for 1000D, DistSSB performed better on ten functions, equal
for one function while GL-SHADE performed better on f1,
f2, f3 & f15, while equal for f12. In case of 2000D DistSSB
performed better than GL-SHADE on twelve functions while
GL-SHADE performed better for f2, f3, & f15. Here it is
pertinent to mention that by increasing dimensions from 1000
to 2000, DistSSB improves in execution time for f1, & f12
over GL-SHADE.

C. Scalability of DistSSB

We have tested the scalability of DistSSB on higher dimen-
sions. On 50,000D results show that DistSSB converged faster
for f2, f3, & f15 functions, whereas the execution time of
GL-SHADE was better for these functions on lower dimen-
sions. Figure. 3 shows the execution time of SHADE-ILS,
GL-SHADE and DistSSB on f2, f3,&f15 for 50000D. To
check the scalabilty of DistSSB experiments are performed on
one million dimensions for overlapping function f12, which
is rather simple and does not involve a rotation matrix (to
reduce the overall complexity). We also tested the scalability
over one million dimensions. The results in Table IV show
that Shade-ILS and GL-SHADE resulted in memory-outage,
while DistSSB and proves to be scalable and suitable for high
dimensional problems.

D. Effect of Islands

We have tested the behaviour of DistSSB using 10, 15,
and 20 islands for f3, against 50000D. The results are shown
in Figure. 4. Increasing the number of islands improves data
parallelism across partitions but this decreases diversity at each
partition and decreases the chances of finding optima during
a migration interval. This is the reason that f3 has got better
optimization value on 10 islands. On the other hand, execution
time decreases with the increase in the number of islands due
to the increased parallelism. Execution time of DistSSB for
f1,f2,f3,f12, and f15 against 50000D and varying islands



Fig. 3. Time comparison of f2, f3, & f15 at 50000D

Fig. 4. Behaviour of DistSSB, on 10,15 and 20 islands on f3 against 50000D

also support the argument as shown in Figure. 5. The number
of islands may be carefully decided keeping in view the trade
off between execution time and optimization value.

Fig. 5. Execution time of DistSSB for 50000D

Fig. 6. Execution time of DistSSB for 20k, 50k and 100k migration interval
on 1000D

TABLE III
ALGORITHMS RANKING USING FRIEDMAN STATISTICAL RANKING

Dimensions DistSSB GL-SHADE SHADE-ILS

1000 1.50 1.93 2.56

2000 1.46 2.26 2.26

E. Effect of Migration Interval

Migration interval of 20K, 50K, and 100K has been used
to study the impact on optimization value and execution
time. Table V shows that decreasing migration interval results
in improved optimization value in most of the cases. Once
solutions at a partition are stuck in local optima, then more
iterations will be wasted in case of higher migration intervals,
hence effecting the overall convergence towards global optima.
On the other hand higher migration interval improves the
execution time as shown in Figure. 6 and Figure. 7. This is due
to the reason that higher migration interval results in reduced
network overhead for constant island size.

TABLE IV
FITNESS VALUE OF f12 ON 106 DIMENSIONS

DistSSB GL-SHADE SHADE-ILS

2.73E+01 Out of memory exception Unable to allocate memory

Fig. 7. Execution time of DistSSB for 20, 50 & 100k migration interval on
2000D

TABLE V
AVERAGE FITNESS COMPARISON OVER 25 RUNS USING 107 ITERATIONS, 1

MIGRATION RATE, AND 10 ISLANDS

f
1000D 2000D

Mi: 20k Mi: 50k Mi: 100k Mi: 20k Mi: 50k Mi: 100k
f1 4.13E-18 1.21E-20 1.58E-25 1.03E+00 1.34E-08 6.77E-18
f2 1.25E+03 6.74E+02 3.67E+02 1.15E+04 1.96E+03 1.40E+03
f3 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01
f4 1.18E+08 2.19E+08 7.68E+07 1.83E+09 3.18E+09 3.67E+09
f5 3.66E+06 2.95E+06 3.39E+06 8.24E+06 7.76E+06 9.15E+06
f6 9.98E+05 9.99E+05 1.03E+06 1.04E+06 1.05E+06 1.05E+06
f7 4.16E-05 1.76E-03 1.01E-01 1.70E+05 5.52E+05 3.48E+06
f8 1.47E+09 3.76E+09 2.63E+09 1.26E+12 2.12E+12 1.41E+12
f9 2.64E+08 2.70E+08 2.43E+08 6.07E+08 7.07E+08 6.63E+08
f10 9.05E+07 9.08E+07 9.26E+07 9.18E+07 9.05E+07 9.06E+07
f11 9.25E+05 1.70E+06 2.77E+06 1.57E+08 2.11E+08 4.10E+08
f12 2.16E+03 2.15E+03 2.05E+03 7.94E+04 3.45E+05 7.27E+04
f13 3.40E+05 6.66E+05 1.79E+06 1.35E+08 1.41E+08 1.06E+09
f14 7.06E+06 8.29E+06 8.37E+06 1.64E+08 1.74E+08 2.99E+08
f15 4.90E+05 1.04E+06 1.40E+06 6.83E+06 1.42E+07 1.91E+07



VI. CONCLUSION AND FUTURE WORK

Various evolutionary techniques have been proposed to
solve LSGO problems. However, the evaluations of these
methods have remained limited. While the problem sizes
are increasing with time, scalable and distributed techniques
are required to solve ever-growing LSGO problems. In this
paper, we have proposed DistSSB, a scalable and distributed
technique to solve LSGO problems. DistSSB uses Apache
Spark for scalability and offers efficient exploration and
exploitation using SHADE and BAT algorithms. We have
compared the performance of DistSSB for varying number
of dimensions over functions of different complexity with
two state-of-the-art algorithms GL-SHADE and SHADE-ILS.
DistSSB outperformed both algorithms in scalability while
delivering comparable results. We have tested DistSSB for
up to one million dimensions, while the other two algorithms
failed to scale. It should be noted that the execution time
of DistSSB remains reasonable for a million dimensions. In
the future, we want to investigate local search methodologies
to augment the performance of DistSSB and search for the
optimal island size in comparison to the problem size. We
also want to apply DistSSB to machine learning parameter
optimization problems in the future.
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