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Abstract—In recent years, more and more exciting sources
of data have been modeled as Knowledge Graphs (KGs). This
modeling represents both structural relationships and the entity
specific multi-modal data in KGs. In various data analytic
pipelines and Machine Learning (ML), the task of semantic
similarity estimation plays a significant role. Assigning similarity
values to entity pairs is needed in recommendation systems, clus-
tering, classification, entity matching/disambiguation and many
others. Efficient and scalable frameworks are needed to handle
the quadratic complexity of all pair semantic similarity on Big
Data KGs. Moreover, heterogeneous KGs demand multi-modal
semantic similarity estimation to cover the versatile content like
categorical relations between classes or their attribute literals like
strings, timestamp or numeric data. In this paper we propose
SimE4KG framework as a resource providing generic open
source modules that compute semantic similarity estimation in
multi-modal KGs. To justify the computational costs of similarity
estimation, the SimE4KG generates reproducible, reusable and
explainable results. The pipeline results are a native semantic
RDF-KG, including the experiment results, hyper-parameter
setup, and explanation of the results, like the most influential
features. For fast and scalable execution in memory, we imple-
mented the distributed approach using Apache Spark. The entire
development of this framework is integrated into the holistic
distributed semantic analytics stack SANSA.

Index Terms—Semantic Similarity, Knowledge Graphs, Knowl-
edge Engineering, Distributed Computing, Explainable Artificial
Intelligence, Scalable Semantic Processing, RDF, Apache Spark,
Machine Learning

I. MOTIVATION

In the field of data analytics and Machine Learning (ML),
there are many applications based on the similarity estima-
tion of entities. On the one hand, there are data optimiz-
ing algorithms like entity disambiguation, entity resolution,
and unsupervised classification. On the other hand, some
algorithms produce results to improve the accessibility of
content references or recommendations like clustering or rec-
ommendation systems. One common data source for these
analytic pipelines is heterogeneous Knowledge Graphs (KGs).
These KGs represent information about entities in linked data
structures1 [1]–[3]. For a standardized data representation, the

1https://lod-cloud.net

W3C standard RDF is used [4]. The integrated data are multi-
modal and require type-specific handling for proper similarity
estimations. Moreover, the results of these algorithms should
be reproducible and reusable so that the effort of the pre-
dictions can be validated, and the predictions can also be
reused in building applications. In addition, it is desirable
to have explainable results such that the use of results is
supported in interpreting them and maybe further adjusting to
the desired outcome instead of being confronted with an ML
black box. Further, the user should be capable of influencing
the ML result to the desired behavior. Due to the sheer size
of RDF KGs, which in the era of big data no longer fit into
the main memory of classical consumer devices, and due to
the quadratic complexity of all pair similarity, the solution
calls for generic, scalable distributed similarity estimation
frameworks. The advantage of distributed computing is that
individual computers cannot be scaled arbitrarily vertically
since, at certain performance levels, the costs increase not
proportionally when leaving consumer hardware or individual
hardware is no longer feasible. Providing such a framework
with good documentation and open-source is crucial since
this ensures transparency and adaptability. An easy-to-use
open-source framework is missing that offers explainable and
adjustable semantic similarity estimation for multi-modal KGs,
simultaneously capable of scaling horizontally to a multi-node
cluster. The main contributions of this work are:

• Semantic similarity estimation SimE4KG algorithm for
multi-modal RDF KGs.

• Novel generic distributed in memory downstream ma-
chine learning modules within the open-source SimE4KG
framework, which is specially designed to scale with
heterogeneous KGs. [5].

• Introduction of multi-dimensional weighting techniques
of domain-aware similarity scores.

• Semantification of similarity estimation improves the
explainability, reusability, and reproducibility, completing
the original RDF Knowledge Graph.

• Documentation within ReadMe, Scala Docs, and sample



pipelines with accessible notebooks, integrated into the
holistic Semantic Analytics Stack SANSA [6].

II. PRELIMINARIES

a) Apache Jena: is an open-source Apache frame-
work [7] programmed in Java to develop Linked Data, RDF
Data, and Semantic Web programs.

b) Apache Spark: is a framework for cluster comput-
ing [8]. It is available under the Apache Open Source License.
Apache Spark encapsulates software modules that optimize the
execution of big data analytics pipelines [9].

c) Resource Description Framework (RDF): is the W3C
standard to represent metadata and designed as a core tech-
nology for building a web of data [4] with the envisioned goal
to realize the Semantic Web [10].

d) SANSA - Semantic Analytics Stack: is an open source
framework to process large scale RDF data based on Apache
Spark, Apache Flink, and Apache Jena, within various tasks
like: semantic data representation, querying, inference, and
analytics [11].

e) Scala: is an object-oriented and functional program-
ming language. Scala uses static types to reduce bugs in
complex applications. One can naively use Java libraries
within Scala code, as Scala is being executed within the JVM
(Java Virtual Machine) [12].

III. RELATED WORK

A. Knowledge Graphs (KG)

In the last years, more and more KGs have been created,
such as Wikidata [13], DBpedia [1], YAGO [3], FreeBase [2],
Linked Movie Database [14] and many more. KGs are used as
a representation of the data integration of linked open data [15]
on the Semantic Web [10]. The W3C standard RDF [4] serves
as a possibility to form uniform terms by URIs and IRIs and
thus facilitate data integration.

B. Distributed KG Machine Learning (ML)

These KGs have become so large that they no longer fit
into conventional computers’ RAM. Therefore distributed ML
frameworks are necessary. Technologies have been developed
for latent embedding based pipelines [16]–[18] and also fea-
ture based pipelines [11], [19], [20]. These enable horizontally
scalable ML pipelines on KGs. Due to a lack of explainability,
especially in latent embedding [21], classical feature-based
approaches can be used [22], [23] to explain the semantics
behind ML.

C. Explainable and Reproducible KG ML

KG-based ML and Semantic Similarity Estimations for
KG are multidimensional [24]. Several approaches have been
developed to improve it. On the one hand, the results become
better explainable by naively annotating the environment and
hyper-parameter setup of the experiment pipeline through
metadata models [25], [26]. On the other hand, latent em-
beddings are only partially explainable [21], [27] where latent
ML approaches can be either transformed into feature-based
models [23] or rely on classical features right away [22].

D. Semantic Similarity Estimation:
For various tasks (see Section I and Section IV-G0b),

similarity scores are needed to calculate the similarity be-
tween entities. Various scores have been introduced in the
last century based on a feature basis (Jaccard [28], Tver-
sky [29], Batet [30]), distance in the graph (Shortest Path [31],
Weighted Links [32], Wu&Palmer [33]), or information con-
tent (Resnik [34], Lin [35]). Frameworks that apply these
similarity scores to actual data have been developed [36]–
[38]. Based on these approaches, scalable similarity esti-
mations were developed for distributed cluster computation
using Apache Spark [8], [39], [40], based on the probabilistic
approach Minhash locality sensitivity hashing [41] and Bucket
Random Projection [8]. DistSim [37] was developed and
integrated into the SANSA Stack [11]. It uses the first feature-
based similarity scores for Apache Spark but does not separate
the features by their types and considers all neighboring nodes
in the graph as categorical features [37]. Due to the complexity
of all pair similarities, a scalable solution is needed; the
ML results should be reproducible and reusable. While many
similarity assessment measures exist, they do not cover the
multiple aspects in one approach: multi-modality, distributed
scalability, and explainability in conjunction with KGs within
a framework.

IV. SIMILARITY ASSESSMENT ARCHITECTURE

This section gives insight into the structure of the SimE4KG
framework and the computation of new generic modules
within the pipeline for scalable distributed domain-aware
multi-modal semantic similarity estimation.

Fig. 1: SimE4KG Pipeline Overview

A. Pipeline Architecture
The SimE4KG framework execution is performed by a

pipeline of generic newly developed modules. Figure 1 shows



the structure of the pipeline. In the following subsections,
IV-B-IV-F, the approaches of the single steps are described,
and technical insights into the implementation are given. The
pipeline consists of seven steps (see Fig. 1). Initially, the data
is Read-In. The relevant entities of the KG that should be
within the similarity assessment can then be specified. Subse-
quently, a probabilistic approach is used to calculate promising
candidates. Extensive and detailed features are extracted from
the KG for these promising candidates. Similarity scores are
calculated and accumulated for the promising candidate pairs
based on the multi-modal features and weights. The results
of the semantic similarity estimation are transformed into a
semantic native form, including the pipeline metadata like the
hyper-parameters. Finally, the RDF Knowledge Graph data is
stored.

a) Pipeline Architecture - Technical Implementation De-
tails: Many new modules were developed during the technical
implementation based on existing widely used libraries and
frameworks. Data management is implemented by the Hadoop
File System (HDFS). All pipeline modules use Apache
Spark [8] for distributed execution and Apache Jena [7] for na-
tive handling of Semantic RDF KGs. The reading and writing
of RDF data are implemented by the SANSA RDF layer [11].
The initial optional filtering of the entities is implemented
by the triple pattern matching options or the SparqlFrame
Transformer [20]. The probabilistic gathering of candidate
pairs reuses the DistSim [37] pipeline (see Subsection IV-B).
For feature extraction, the significantly faster SmartFeatureEx-
tractor was developed as an alternative to the existing Sparql-
Frame/Literal2Feature [20], [22] Transformer (see Subsection
IV-C). The multi-modal semantic similarity estimation and
the semantification of the results were implemented as new
Transformers (see Subsection IV-D-IV-E and List. 1), which
are aligned to the well-known libraries, e.g. Apache Spark
MLlib and scikit-learn [9], [42].

1 v a l ds : D a t a s e t [ T r i p l e ] = s p a r k . r d f ( [ . . . ]
2 v a l SimE4KG = new DaSimEst imator ( )
3 . s e t O b j e c t F i l t e r ( [ . . . ]
4 . s e t D i s t S i m F e a t u r e E x t r a c t i o n M e t h o d ( ” os ” )
5 . s e t S i m i l a r i t y V a l u e S t r e c h i n g ( t rue )
6 . s e t I m p o r t a n c e ( Map( ” a c t o r s i m ” −>

0 . 2 [ . . . ]
7 v a l s i m i l a r i t y D f : DataFrame = SimE4KG
8 . t r a n s f o r m ( ds )
9 s i m i l a r i t y D f . show ( )

Listing 1: Example code usage of SimE4KG module

B. Probabilistic Gathering Candidate Pairs

The RDF KG is read by using the existing SANSA RDF
layer API [11] (see Fig. 1 (1,2)). Afterward, the KG is
available as a Spark Dataset of Jena Triples. Since the com-
plexity (see Fig.7 top left) of multi-modal and domain-aware
similarity scores has, in principle, a quadratic running time,
the probabilistic feature-based similarity score is performed
based on the DistSim approach [37]. For this, the relevant

entities are initially determined by a filter in the KG (see
Fig. 1 (3-6)). A SPARQL query or a triple filter can be
used based on the object, such as a concrete rdfType. The
object filter method is faster (see Evaluation and Fig. 10) but
allows less complexity for the specification. The SPARQL
filter is executed by the SparqlFrame transformer, a generic
SANSA stack module that internally uses SPARQLIFY [20],
[43]. For the filtered entities, features are extracted using the
DistSim feature extractor. These features are transformed into
numerical feature vectors using two different options. The
options are either the HashingTF or the CountVectorizer of
Spark [8], [9]. For the selected entities, the upper triangular
matrix of similarity scores is computed and filtered by a
minimum threshold of entity pair similarity. The similarity
scores are generated using the MinHashLSH Apache Spark
implementation [40] (see Fig. 1 (7-13)). Since the DistSim
approach treats all KG features as categorical features within
the MinHashLSH, this step is only used as a first guess to
reduce the complexity of the multi-modal estimations (see
Subsec. IV-C & IV-D). The result is the basis for all entity
pairs to be computed in the multi-modal semantic similarity
score procedure.

1 v a l ds : D a t a s e t [ g raph . T r i p l e ] = [ . . . ]
2 / * * Smart F e a t u r e E x t r a c t o r * /
3 v a l s f e = new S m a r t F e a t u r e E x t r a c t o r ( )
4 . s e t S p [ . . . ]
5 / * * F e a t u r e E x t r a c t e d DataFrame * /
6 v a l f e a t u r e E x t r a c t e d D F : DataFrame = s f e
7 . t r a n s f o r m ( ds )
8 f e a t u r e E x t r a c t e d D F . show ( )

Listing 2: Example code usage of SimE4KG Pipeline
Transformer SmartFeatureExtractor

entity runtime actors release date title fN
(URI) (Double) (Array[URI]) (Timestamp) (String) ...
https://.../film1 141.0 [htt//.../a4, ...a8] 2002-01-01 Catch Me If y... ...
https://.../film2 142.0 [htt//.../a1, ...a2] 1994-01-01 The Shawshan... ...
https://.../film3 189.0 [htt//.../a1, ...a4] 1999-01-01 Green Mile ...
https://.../filmN ... ... ... ... ...

TABLE I: Sample multi-modal result SmartFeatureExtractor

C. Feature Extraction

Based on the feature extractor implementations in the
SANSA stack (FeatureExtractorModel, SparqlFrame), a fea-
ture extractor Transformer SmartFeatureExtractor was devel-
oped that combines the strengths of both. The speed is in-
creased by using the parallelizable and efficient pivot function
in Apache Spark [8], but also the resulting DataFrames are
collapsed, so that for each sample, a row exists [20] (see Fig.
1 (14-17) and Fig.2 (1-3)). The columns are automatically
annotated to the literal types2 mounted when given so that
native operations can be performed on the given values (see
Table I and Fig. 2 (3,4)). This predicate-based and multi-
modal feature extraction significantly improves the approach

2https://www.w3.org/TR/swbp-xsch-datatypes/



from DistSim. The similar functionality of the SparqlFrame
requires a call to the underlying SPARQLIFY [22], [43] frame-
work, which introduces significant time complexity, although
this is essential due to the higher variability of a SPARQL
query in certain use cases. So, for most use cases, the new
SmartFeatureExtractor enables faster (see Sect. V) but also
domain-aware and multi-modal feature extraction in contrast
to the DistSim feature extractor model [37] and SparqlFrame
Feature Extractor [20].

Fig. 2: SimE4KG Data Transformations

D. Domain Aware and Multi-Modal Similarity Estimation

For a final assignment of a similarity score, individual
feature-specific similarity scores are calculated based on all
extracted features (see Fig. 1 and Fig. 2 (3-5)). Matching
similarity scores are automatically assigned and used for dif-
ferent multi-modal feature types. For example, for categorical
feature lists such as an arbitrary number of genre annotations,
similarity scores are computed using the Jaccard index [28],
[37]. A normalized distance across the whole feature distribu-
tion is calculated for continuous values like runtime. For lists
of timestamps, a normalized mean distance is calculated as
the similarity score based on a transformed unix timestamp
representation of these features (see Fig. 2 (4) green and blue).
Thus, all features are assigned a similarity score between
0.0 (no similarity) and 1.0 (exact similarity). Subsequently,
all similarity scores can be normalized (see Listing 1) again
to carry domain awareness correctly on the characteristics of
the different KGs and similarity scores (see Fig.2 (5)). The
supported and mapped similarity scores can handle the follow-
ing multi-modal KG data types: Boolean, String, TimeStamp,
Double, Int, URI/IRI [7], [8].

E. Weighting of Features and overall Similarity Assessment

The decided feature similarities are aggregated in a final
overall similarity score based on a weighted sum. Likewise,
the most significant feature similarities for explainability are
collected. However, individual similarity scores can also be
weighted. Several weights can be specified by the user as
parameters or are automatically derived from a holistic data
analysis of the KG. The weights are the following:

Fig. 3: Extract of feature availability within LMDB dataset
of type movies

a) Importance: With the optional importance parameter,
the user can give SimE4KG a personal preference for the
relevance of features. For example, if this pipeline is an
implementation of a recommendation system in the field of
a movie database, the user can assign increased importance
to concrete feature similarities such as a high similarity of
genre and actors (see List. 1 line 6). The importance is
optional; if it is not specified as a parameter, all features have
equally distributed importance. If the importance is given, the
respective values must sum up to one.

b) Availability: The availability weight is automatically
calculated. The non-null, non-empty, or non-nan values ac-
cumulate to the availability ratio for each feature. It is used
in the case of weighting similarity scores when a score is
calculated from two entities concerning a concrete feature. In
some cases, the feature value is not provided for one of the
entities. Due to the open-world assumption, this can always
happen (see Fig. 3). However, if, in principle, a feature is often
null (low availability), a low similarity in this feature should
not negatively impact the overall similarity score.

c) Reliability: It describes the likelihood of the informa-
tion within a feature being correct; if a particular feature is less
reliable, its respective similarity score can be reduced in the
final influence of the overall result. The basic idea is that KGs
are created by merging and integrating many data sources.
The initial data sources building the data integrated KG
are differently obtained, differently volatile, and differently
ensured to be up to date. In contrast to availability, reliability
must be handed over as a parameter because it needs expert
knowledge about the data sources not stored within the actual
data and not each user can provide.

F. Semantification of Results and Meta Data

The SimE4KG pipeline provides end-to-end RDF KG data
handling (see Fig. 1). The results of the similarity estimations
can be output as native RDF data. Not only the resulting
similarity scores for pairs of entities are mapped (see Fig.4,
blue) but also other metadata like the hyper-parameter setup
of the pipeline (see Fig. 4, green and yellow). This data
is provided for the results’ reusability, reproducibility, and
explainability. Here the explainability is the annotation of the



most influential factors (one or multiple) e.g. for film1 and
film2 the most influential factor is the overlapping writer (see
Fig. 4 in yellow). Furthermore, the reproducibility is supported
by including the hyperparameters of the whole pipeline. The
reusability is made possible because the results coexist natively
in the original KG (see Fig. 4 in grey) and can thus be included
in queries or further analyses.

Fig. 4: SimE4KG Semantification Example

G. Impact & Use Cases

a) Potential Impact:: SimE4KG is an interesting re-
source for the AI/ML, Knowledge Engineering, and Semantic
Web community because it offers scalable and multi-modal
semantic similarity estimation as an easy-to-use framework
integrated into SANSA. All generic modules are adjustable
and usable outside the intended context to create arbitrary
downstream ML pipelines for RDF KGs. Due to its usability,
this source offers a solution to use KGs and ML results
for tools like recommendation systems. Also, the metadata
encourages the reproducibility of ML experiments. It makes
it easier to use semantic data cause of its distributed scalable
approach. Working with generic transformers, which are well
established in libraries and frameworks, also offers many data
scientists access to all the interesting semantic data sources.
By semantification of the ML pipeline parameters and results,
we introduce how downstream ML and similarity estimation
pipelines create native semantic results. These results become
explainable and reproducible. This representation also offers
many data integration advantages to the source knowledge
graph. The resource improves and widens the opportunities
of already developed frameworks like the DistSim approach
that could not produce explainable results and operate on
multi-modal data, while the user can set parameters like the
presented weighting.

b) Use Cases: Generic, scalable distributed semantic
similarity estimation pipelines for RDF KGs are needed in sev-
eral follow-up ML and data analytics tasks. The EU Horizon
2020 project PLATOON (Platform for Tools in Energy3) uses
this framework to analyze large-scale energy RDF data. The
database of the PLATOON project was made available for data

3https://platoon-project.eu

integration from many data sources in RDF, which especially
contain multi-modal features within the Literals. The data is
of such a large-scale that individual systems can no longer
process it. Another project, Simple-ML4, develops on top of
the generic data analytics options of SANSA a convenient
(low-code, no-code) opportunity to stack ML approaches. The
SANSA stack supports the data analysis in the Opertus Mundi5

project.

H. Quality, Reusability, and Availability

a) Reusability: The resource is documented by
ReadMes, where the framework’s ideas, thoughts, and
evaluations are presented6. All novel modules are documented
by scala docs. We provide Hands-On tutorials for sample
pipelines within the framework and supply sample Databricks
notebooks. Due to the open-source and generic pipeline
development approach, the framework is extensible. Within
the multiple sources (ReadMe, GitHub Pages, Databricks
sample notebooks), the framework is explained and how it
can be used.

b) Design and Technical Quality: The resource modules
are developed generically and are aligned with common down-
stream ML pipeline modules like scikit-learn [42] and Apache
Spark MLlib [9] transformers where all (hyper-) parameters
are set over setters (see List. 1). The maintenance is supported
by the scala-docs, and unit tests are automatically called
by GitHub actions. The ReadMes and Databricks Notebooks
elaborate the downstream tasks to assist the use of specific
modules to perform intended or adjusted similarity estima-
tions. SimE4KG is integrated into SANSA framework and it
reuses modules from the related approaches: DistSim [37],
DistRDF2ML [20], SPARQLIFY [43] and Apache Spark
MLlib MinHashLSH [40]. All the frameworks and data used
within this tool, all the tools which are used, are openly
available and mostly open source. The framework is evaluated
in multiple domains, offering performance metrics in data size
and processing power scalability, and presents the advantages
and disadvantages of the novel introduced modules. The entire
resource is available within the open source SANSA GitHub
reprository7. All modules are merged over a pull request and
available within the linked SimE4KG SANSA release8 [5].
The framework is available under the Apache License 2.09.
The framework goes through release cycles twice a year, and
novel modules are earlier available in pre-releases.

V. EXPERIMENT AND EVALUATION

In this section, we evaluate the performance and charac-
teristics of the proposed SimE4KG framework. SimE4KG is
evaluated in the dimensions of scalability over increasingly
complex pipelines (dataset size and hyperparameters) and

4https://simple-ml.de
5https://www.opertusmundi.eu
6http://sansa-stack.github.io/SANSA-Stack/
7https://github.com/SANSA-Stack/SANSA-Stack
8https://github.com/SANSA-Stack/SANSA-Stack/releases/
9https://www.apache.org/licenses/LICENSE-2.0



the scalability of the approach over distributed cluster archi-
tectures. The newly developed approaches, such as feature
extractor and similarity estimation, are compared with the
distributed approaches from related work. All evaluations are
presented here, and some further details are documented on
our release page. The evaluations were performed on a three-
node cluster, with each node having 64 cores and 256 GB
RAM, configured with Spark 3.x, Scala 2.12, and Java 11. In
addition, experiments were run on a Macbook Pro 16 (2019)
with dataset sizes and hyperparameter configurations that did
not exceed the available memory. The presented processing
times can be reproduced by the available benchmarking and
evaluation scripts. The experiments are evaluated on the multi-
modal Linked Movie Data Base (LMDB) KG [14] resulting
in 109 potential candidate pairs (see Fig. 5 and Fig. 7).

Fig. 5: Evaluation dataset size scalability LSH effect

Fig. 6: Evaluation of Spark Overhead by Dataset Size

A. Dataset Size vs. Processing Time

The use of distributed technologies results from the fact that
semantic data and KGs can exist in data sizes that exceed
the available memory on local computers. However, since
memory provides a fast way to process data, the capabilities
of distributed in-memory cluster computation are a significant
advancement. In this evaluation (see Figs. 5,6,7), we show
the scalability of SimE4KG over increasing data set sizes. In
Fig. 5, we present that the quadratic complexity of all pair
similarities is reduced by two orders of magnitude using the

MinHash LSH approach (from 109 to 107 similarity scores
for entity pairs). Fig. 7 shows that the framework scales
linearly among, in principle, quadratic increasing candidate
pairs computed on the cluster (the 30k+ unique entities already
correspond to 107 selected candidate pairs and 109 potential
candidate pairs, see Fig. 5). The spark overhead also is propor-
tionally reduced in more extensive data set size scenarios (see
Fig. 6). We also evaluated the scalability of local execution
between a linearly increasing number of movie entities and
increasing quadratic candidate pairs (see Fig. 5). Additionally,
the almost linear scaling is observed among quadratically
increasing problems due to the MinHashLSH approach and
the usage of Spark Cluster computation.

Fig. 7: Evaluation SimE4KG dataset size scalability on
LMDB subsets

B. Processing Power vs. Processing Time

The additional performance on cluster computation with the
increased number of computation units (cores) can only be
used by parallelizable and efficient algorithms. To evaluate
the scalability of performance over increasing computational
power, we configure our cluster with different numbers of
executor cores so that a reduction of the processing time
becomes transparent with constant LMDB KG data. Fig. 8
shows how the processing time can be reduced with more
processing power. In addition, we would recommend a well-
balanced spark cluster setup to even bring down the processing
time with the same overall processing power (see Fig. 9). The
more executors a cluster has, the more the implementation can
be executed in parallel. Still, all those parallel jobs need to be
managed and synced by a driver, creating an overhead. Our
observation in Fig. 9 shows that having multiple executors
(more executors than nodes) but each having still quite a lot
of processing power results in faster performance.

C. Comparison of SimE4KG to Distsim and DistRDF2ML

In contrast to existing DistSim frameworks, SimE4KG can
deal with the multi-modal nature of RDF KG and produces
explainable results that the user can better understand. More-
over, the ideas of the SPARQLIFY-based SparqlFrame are
extended for the generic feature extractor. These and other
modules have been tested through (hyper-)parameter evalua-
tions. The left table within Fig. 10 presents that the novel
SmartFeatureExtractor outperforms the SparqlFrame feature



Fig. 8: Evaluation processing power scalability

Fig. 9: Evaluation spark cluster configuration effect

extractor in the full 26 features (projection variable = PV)
with one layer depth. So if the extended feature extraction (see
Fig. 1(15,16,17)) is only interested in the features of distance
one in the KG, the SmartFeatureExtractor from SimE4KG
should be selected. If a precise and deep traversal of the KG
structure is needed, the existing SparqlFrame can be used.
In addition, the initial seed gathering (see Fig. 1(4,5,6)) has
been extended and evaluated. For the 3,5M triples containing
information about roughly 40K entities of type movie, the
initial time for collection of seed entities could be reduced
from 15 seconds using the SparqlFrame, to 2 seconds with
the object pattern matching based on the Apache Spark/Jena
Triple matching (The processing time measures shown in Fig.
10 result from local execution on MP16-2019).

Fig. 10: Evaluation and Comparison to available SANSA
modules

VI. DISCUSSION

The evaluation has shown that the developments of
SimE4KG are both scalable for increasingly complex data
and scale well horizontally over increasing resources. This
scalability enables more complex similarity estimations using
the framework SANSA. The integration and documentation of
SimE4KG and its scalable performance provide a reasonable

basis for follow-up ML or data-analytic pipelines in SANSA.
The pipelines can be used for implementing recommenda-
tion systems, entity matching, or clustering. In the multi-
dimensional evaluation, it becomes clear that the various
feature extractors of DistSim, DistRDF2ML, and SimE4KG
differ in complexity, both in the set of possible features and
their runtime. In the present use cases, the newly developed
feature extractor compromises the fast but non-differentiated
collection of features and the various configurable but com-
putationally intensive SPARQL-based feature extractors. The
design of the similarity estimator allows far more influence
by the pipeline’s user. Also, SimE4KG can cover many more
possible multi-modal knowledge graph data types. There are
fast probabilistic methods as well as more accurate non-
probabilistic algorithms. Also, the improved annotation of the
similarity estimations allows an increased explainability of the
created results.

VII. CONCLUSION & FUTURE WORK

This work presents the SimE4KG framework integrated
into the semantic analytics stack SANSA. SimE4KG is an
explainable, scalable, distributed multi-modal in-memory se-
mantic similarity estimation approach for RDF KGs. The
similarity assessment is performed by a pipeline of generic,
easily configurable software modules. All of them are aligned
with the common usage of ML pipeline transformers, offering
standard usability. In addition, the entire similarity estimation
is optimized to fit the multi-modal nature, and the results are
presented in an explainable, reproducible, and reusable native
RDF format. The extensive evaluation of framework perfor-
mance shows the significant scaling of distributed computing.
The entire framework is open-source and available through
the corresponding GitHub repository, while the documentation
in the form of a tutorial like ReadMe, scala-docs, hands-on
example classes, and Databricks notebooks is presented. Due
to the generic nature and the integration into the SANSA
stack, SimE4KG can be extended, and the individual software
modules can be used outside the initially intended usage.

A. Future Work

The approach presented here can be further explored in
several possible directions. Further similarity measurements
can be added to address use-case-specific requirements better
or handle other possible multi-modal literals of a KG, such
as images or audio data. Embeddings or visual bag-of-words
transformers can be possible options to achieve this for images.
Moreover, with the number of open-source datasets available,
many exciting hands-on pipeline creations are possible in
domains like recommendation systems for streaming content.
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