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Abstract. We have recently made a huge leap in terms of data formats,
data modalities, and storage capabilities. Dozens of data storage tech-
niques have been created as a result. Today, we are able to store cluster-
wide data, and to choose a storage technique that suits our application
needs, rather than the opposite. If different data stores are interlinked
and integrated, this data can generate valuable knowledge and insights.
In this article, we present an approach that uses semantic technologies
to query heterogeneous Big Data stored in a Data Lake in a unified man-
ner. Our approach is based on equipping original data stored in the Data
Lake with mappings and adding transformations to the SPARQL query
syntax to make heterogeneous data joinable across the Data Lake. We
devise an implementation, named Sparkall, that uses Apache Spark as
the underlying query engine. Our evaluation demonstrates the feasibility
and efficiency of Sparkall in querying five popular data sources.

1 Introduction

For over four decades, relational data management was the dominant paradigm
for storing and managing structured data. Use-cases such as storing vast amounts
of indexed Web pages and user activities revealed the relational data manage-
ment’s weakness at dynamically scaling the storage and querying of massive
amounts of data. This initiated a paradigm shift, calling for a new breed of
databases capable of storing terabytes of data without deteriorating querying
performance. Google BigTable [2], for example, a high-performing, fault-tolerant
and scalable database appearing in 2006, was among those first databases to dis-
adhere to the relational model. Since then, a variety of non-relational databases
came to existence.

This development also correlated with the beginning of the new Big Data era
of data management. The three challenges4 are: storing large volumes of data,
processing fast paced flux of data – velocity, and embracing the ever increasing
types and structures of data – variety. NoSQL databases, collectively with Big

4 There are other dimensions, e.g., Veracity, and Value, but these three mentioned are
the original and most common ones.



Data frameworks, such as Hadoop, Spark, Flink, Kafka, etc. efficiently handle
storing and processing of voluminous and continuously changing data. The sup-
port for the third Big Data dimension though, i.e., facilitating the processing
heterogeneous data, remains still less explored.

Semantic Web standards for data integration. For almost two decades, semantic
technologies are developed to facilitate the integration of heterogeneous data
coming from multiple sources following the local-as-view paradigm. Local data
schemata are mapped to global ontology terms, using mapping languages that
have been standardized for a number of popular data representation techniques,
such as relational data, JSON, CSV or XML. Data can then be queried using the
SPARQL query language employing terms from the ontology. Such data access
can either be physical by exhaustively transforming the whole input data into
RDF, based on the mappings. In a virtual data access method, called Ontology-
Based Data Access (OBDA) [8], the data remains in its original format and form.
It is only after the user issues a query that relevant data is pulled, by mapping
the terms from the query to the schemata of the data.

Challenges of OBDA for large scale data. Implementing an OBDA on top of Big
Data poses two major challenges:
– Query translation. SPARQL queries must be translated to the query dialect

of each of the relevant data sources. Depending on the data type, the generic
and dynamic translation between data models can be challenging. For exam-
ple, translating queries to the document query syntax in MongoDB is very
complex as reported by [7].

– Federated Query Execution. In Big Data scenarios, it is common to have
non-selective queries, so that joining or possibly union can not be performed
on a single node in the cluster, but have to be executed in a distributed
manner.

Contributions. In this article, we target the previous challenges and make the
following contributions:
– We propose an architecture of an OBDA that lays on top of Big Data and

NoSQL databases. Thus, we enable querying heterogeneous data using a
single query language: SPARQL.

– We extend the SPARQL syntax to enable declaring transformations, using
which users can alter join values and make data join-able, when it is not in
its original representation. As we are targeting data that is possibly gener-
ated using different applications, data might not be readily join-able. Hence,
allowing users to declaratively transform their data is of paramount impor-
tance.

– We implement an instance of the proposed architecture using Apache Spark,
which provides wrappers for several databases with SQL access. We therefore
create a tailored SPARQL-to-SQL converter. We call this Mediated OBDA,
as SQL is used as a mediator middle-ware between the data and the SPARQL
interface.



– We build a NoSQL ontology, to classify NoSQL databases and related con-
cepts and use it as part of the data mappings.
The remainder of the article is structured as follows: Section 2 suggests an

architecture for the Semantic Data Lake. Section 3 details the implementation
of an instance of the architecture, named Sparkall. Section 4 is where we report
on our evaluations of the implementation. Section 5 gives an overview of related
work. Finally, Section 6 concludes and discusses future directions of the work.

2 A Semantic Data Lake Architecture

2.1 Preliminaries

We define the following terms:
– Data attribute comprises all concepts used by data sources to characterize a

particular stored datum. It can be a table column in a relational database
(e.g. Cassandra) or a field in a document database (e.g. MongoDB).

– Data Entity comprises all concepts that are used by different data sources
to store similar data together. It can be a table in a relational or a collection
in a document database. A data entity has one or multiple data attributes.

– ParSet refers to a tabular data structure that can be operated on in parallel,
since it is partitioned and distributed among cluster nodes.

– Parallel Operational Zone (POZ) is the parallel distributed environment
where the ParSets live and evolve. In practice, it can be represented by
disks or main memories of a physical or virtual cluster.

– Semantic Data Lake is the heterogeneous pool of data consisting of data
lying in its original raw format, without a binding high-level schema, is often
referred to as a Data Lake. As such, adding an OBDA-like access lifts the
lake into a Semantic Data Lake.

2.2 Architecture

Data warehouses follow the Extract-Transform-Load (ETL) paradigm, a process
whereby data is first extracted, then undergoes a series of transformations that
brings it to a desired form and structure, then loads this in the warehouse. A Data
Lake, on the other hand, stores data in its original format on a scalable file or
block storage infrastructure (e.g. using the HDFS cluster file system) often using
commodity hardware instead of expensive clusters. A problem here, however, is
that data in different representations can not be jointly queried. A semantic
layer on on top of a Data Lake can help to map different data representations
to the unified RDF data model and suitable vocabularies and ontologies. Once
original data representations are mapped, SPARQL queries against the mapping
ontologies can be translated and executed on the original data. However, different
parts of a query can be satisfied by different data sources in the Data Lake,
which the requires intelligently joining data. To do so, we envision a Semantic
Data Lake architecture comprising five components: (1) Query Catalyst (2) Data
Mapper, (3) Data Connector, (4) Distributed Query Processor, and (5) Query
Designer, all depicted in Figure 1.



Fig. 1. Semantic Data Lake Architecture.

Query Catalyst. Once the user issues a SPARQL query, the BGP part of the
query is decomposed into a set of star-shaped sub-BGPs, or stars for short. A
star is then a set of triples that share the same subject. Figure 2 (a) shows an
example of a BGP of a SPARQL query having six stars, each identified by its
subject variable. A star can be typed or untyped. It is typed if there is a triple
with the typing predicate: rdf:type (or a). In figure 2, stars k, a, e and r are
untyped, while stars in and c, are typed.

Next, the stars will be linked together in the following way. Whenever a
variable is detected in the object position of any of the triples of the star, it
is checked if (1) it represents another star in the query, or (2) it is present in
the object of another star. Note the arrows on the right of the colored boxes on
figure 2 (a).

Data Mapper. One key concept of OBDA systems is the mappings, which are
means of associating raw data with its equivalent semantic description. We use
mappings to (1) abstract from the differences found across data schemata, and
(2) provide a uniform query interface above heterogeneous data.

Entity Mapping. We use the mapping language to map entities contained in
the Data Lake, or at least the ones that we want to be queried and found. The
mappings are provided by the user as an input5. Three types of mappings are to

5 Whether they are created manually, semi-automatically or automatically is out of
the scope of this work.



Fig. 2. (a) BGP of a query, six stars and four joins (b) Left-deep join plan.

be provided by the user: (1) attributes mapping, (2) entity mapping – optional,
and (3) entity ID (primary key). For example, a Cassandra database has an
entity (table) Author containing the attributes: first name, last name and its
primary key AID. In order to enable finding this table, the user has to provide
the three mapping elements:
– Attribute mappings: (first name, foaf:firstName), (last name, foaf:lastName)
– Entity mapping: (Author, nlon:Author)
– Entity ID: AID.

Where foaf:firstName and foaf:lastName are predicates from the ontology
foaf and nlon:Author is a class from the ontology nlon.

Mappings usage. Once all query stars are extracted, each star is looked at sepa-
rately. The Data Mapper checks the mappings for the existence of entities that
have attribute mappings to each of the predicates of the star. The type of star
(rdf:type X), if present, reduces the entities space to only those having the
type of the star. Reciprocally, if a star is untyped, all found entities, regard-
less of which data source they come from, are regarded as the same. This can
have a negative effect when the star is to be joined with other stars. For exam-
ple, suppose a query with two joint stars. A star (supposedly) about authors,
with the two predicates foaf:firstName and foaf:lastName; and a star about
books. As both authors and speakers entities have those two attributes, they
will be identified as relevant data, and, thus, be joined with books. This clearly
yields wrong results as speakers have no relationship with books. Moreover,
the availability of type information in the entities can enable advanced use-cases
of Semantic Web, like creating hierarchies between classes. For example, if all
authors and professors are researchers, then querying researchers would return
results from authors and professors. This is left for the future, though.

Data Connector. The Data Connector is the component responsible for con-
necting data from its storage inside the Data Lake to the POZ. In order for



Fig. 3. ParSets join links.

relevant data entities to be loaded as a ParSet inside the POZ (in response
to a query), Data Connector requires that each data, or at least needed ones,
to be accompanied with metadata containing minimum information needed to
access it, e.g., credentials and host of the containing database. The Data Con-
nector serves as a middle-ware between the Data Lake and the Query Processor
explained next.

Distributed Query Processor

Star-to-Parset. Each star identified by the Query Catalyst will generate one
ParSet at the end, one-to-one. The Query Processor takes the entity relevant to
each star and loads it into a ParSet. When there are multiple relevant entities
to a star, their respective ParSets will be union-ed into one ParSet.

Joining ParSets. The links between the stars identified by Query Catalyst will
be translated into joins between the ParSets. Joins can be formulated as follows:

On(Join(s1, s2), pred) = {∃s1, s2 ∈ S ∧ s1 ./s1.pred1=s2.pred2 s2}

Where S is the set of all stars, e.g., in figure 2 (a), S = {k, a, in, e, c, r}, pred1
is a predicate from s1, and pred2 can either be the entity ID of s2 (case 1 from
2.2), or a predicate from s2 (case 2 from 2.2). See figure 3.

Once all joins are identified, we proceed to compute the actual joins be-
tween all the ParSets, producing at the end the results ParSet. The joins we
compute are nested-loop joins, hence, the most suitable execution order is a
deep-left [4], see algorithm 1. Initially, we keep all the identified joins in a hash
map, containing the two ParSets of each join along with their join variables,
((parset1,join variable1) -> (parset2,join variable2)), called joins map. This will
act as the input to the algorithm. We start by joining the first pair of the joins
map, results of which will be the first elements of results ParSet (line 3). This
latter will be the base relation for all the remaining joins. The two ParSets of
the join just computed are added to a list called joined ParSets (lines 4). Then,
we iterate through each join pair of the remaining joins map, and check which
ParSet of the two has not been added to joined ParSets (lines 8 to 15), i.e.,
joined before with results ParSet. If only one of the two exists, then join the
non-existing ParSet with results ParSet using the join variable of the existing
ParSet and the join variable of the non-existing one (line 9 and 12). Then add
the two ParSets to joined ParSets (lines 10 and 13). If none of the two ParSets



has been found in joined Parsets, then it is impossible to join, and the pair at
hand is added to a queue (line 15). We iterate till the end of the joins map. Now,
we visit the queue and do exactly as we did with the pairs in the above for loop
(lines 8 to 15), with one addition: after each successful join, de-queue the added
pair (line 21).

Algorithm 1: Building final results ParSet.

Input : joins map
Output: results ps

1 ps1←− joins map[0].key;
2 ps2←− joins map[0].value;

3 results ps←− ps1.join(ps2).on(ps1.var = ps2.var);
4 joined parsets.add(ps1).add(ps2);
5 for i← 1 to joins map.length do
6 ps1←− joins map[i].key;
7 ps2←− joins map[i].value;

8 if joined parset.contains(ps1) and ¬joined parset.contains(ps2) then
9 results ps←− results ps.join(ps2).on(results ps.(ps1.var) = ps2.var);

10 joined parsets.add(ps1).add(ps2);

11 else if ¬joined parset.contains(ps1) and joined parset.contains(ps2)
then

12 results ps←− results ps.join(ps1).on(results ps.(ps2.var) = ps1.var);
13 joined parsets.add(ps1).add(ps2);

14 else if ¬joined parset.contains(ps1) and ¬joined parset.contains(ps2)
then

15 pending joins.enqueue((ps1, ps2));

16 end
17 while pending joins.notEmpty do
18 join pair ←− pending join.head;
19 ps1←− join pair.key;
20 ps2←− join pair.value;

/* Check and join like in lines 8 to 15 */

21 join pair ←− pending join.tail;

22 end

This will leave us with one ParSet joining all the ParSets, as depicted in
figure 2 (b). All the joins are computed in parallel, inside the POZ. Note that
in order to solve attribute naming conflicts between stars, like two stars having
foaf:firstName predicates, we encode the names in the ParSet using the fol-
lowing template: {star pred namespace}, e.g., a_firstName_foaf (author star)
and r_firstName_foaf (reviewer star).

Transformations. As data can be generated by different applications, the at-
tributes to join on might e.g., have values formatted differently, lying in different



value ranges, or have invalid values to skip or replace. Hence the join would yield
no results, or yields undesirable ones. Transformations are then means to fix the
data and bring it to the joinable state. Query transformations are executed on
the ParSets, i.e., in parallel and distributed. If the storage support of the POZ
is main memory, these transformations can be applied very efficiently.

Query Designer. In such a disperse environment with high schema variety
and richness, providing an interface for plain text SPARQL query creation would
elevate the barrier of entry to Semantic Data Lakes. Also, when we mention data
silos, we talk about companies6 and institutions that might have the need for a
Semantic Data Lake, but neither do they have the knowledge about SPARQL,
nor they want to invest in it. Therefore, a query designer is a necessity. We
identified the following requirements:
– R1. The query should be built using the same principle as the Query Cata-

lyst, i.e., the concept of stars, and links between stars.
– R2. Stars should contain only predicates that exist in the mappings, predi-

cates that exist together in an entity.
– R3. Users incorporate transformations in a declarative way, i.e., they specify

which transformations they want, not how they implement them.
R2 is suggestive only, users can build stars otherwise, but they will obtain no
results. Therefore, Query Designer not only supports building a query without
knowledge of SPARQL, but also allows to build queries that potentially return
results. In order to meet R3, we extend the SPARQL syntax to allow declaring
transformations applied to join variables. We suggest a new clause: TRANSFORM(),
which is used inside the scope of graph pattern in the following way:

TRANSFORM ([ leftJoinVar ][ rightJoinVar ].[l|r].[ transformation ]+)

For example:

?bk schema:author ?a .

TRANSFORM(?bk?a.l.replc("id","1").toInt.skp(12)

This reads as follows. Refer to the needed join by placing its two operands
(stars) together: ?bk?a; we call it join reference. Next, to instruct that we need
to make changes on the variable of the left operand, which is schema:author, use
the denominator [.l] on the join reference, i.e., ?bk?a.l. Then, we list the needed
transformations separated with dots: replc("id","1").toInt.skp(12). As the
role of transformations is to make the two stars joinable, these transformations
have to be executed on the ParSet of the concerned star before the join. When
there is no pattern detected between the join values of the two tables to join,
or the values are radically different, like values are in one side numeral auto-
increments while in the other are random auto-generated textual codes. In that
case, data is declared unjoinable and has to be transformed and regenerated by
its provider.

6 http://newvantage.com/wp-content/uploads/2016/01/

Big-Data-Executive-Survey-2016-Findings-FINAL.pdf

http://newvantage.com/wp-content/uploads/2016/01/Big-Data-Executive-Survey-2016-Findings-FINAL.pdf
http://newvantage.com/wp-content/uploads/2016/01/Big-Data-Executive-Survey-2016-Findings-FINAL.pdf


3 Sparkall: Semantic Data Lake in action

We present a realization of the Semantic Data Lake architecture, that we name
Sparkall. It is one instance of the architecture, where components are imple-
mented using a selection of technologies. Sparkall is based on Apache Spark7,
a general-purpose processing engine for Big Data, and the SPARQL query lan-
guage used as an interface to the outside.

3.1 Data Mapper: RML

Our mapping language of choice is RML8. With minimal settings, RML enables
us to annotate entities and attributes, exactly the way we need it. Although we
use the exact terms proposed in RML, our end-goal, at least for this implemen-
tation, is different. We do not intend to generate RDF triples, neither physically
nor virtually. We rather use them to map entities (as explained in 2.2), and use
these mappings to query relevant data given a SPARQL query.

Fig. 4. Example of RML mappings.

Figure 4 shows an example
of mapping the entity Author

using RML. An entity map-
ping needs three building blocks:
(1) rml:logicalsource used to
specify the entity source and
type. (2) rr:subjectMap, used
only to extract the entity ID9. (3)
rr:predicateObjectMap, used
as many attributes as the en-
tity has; it maps an attribute us-
ing rml:reference to an ontol-
ogy term using rr:predicate.
Note the presence of the property
nosql:store from the NoSQL ontology (see next section), it is used to specify
type of the entity, e.g., Parquet, Cassandra, MongoDB, etc.

We provide a user interface that guides and helps users in adding suitable
mappings to their data. The interface has a placeholder for each of the map-
ping elements described in 2.2: attributes, entity and ID. Attributes and entity
placeholders are pre-filled with terms from the LOV catalog10. User can validate,
choose from LOV or create new terms. Among the attributes, they choose which
will be the ID/primary key of the entity.

NoSQL Ontology. The ontology was built to fill a gap we found in RML, that is
the need to specify information about NoSQL databases. The ontology names-
pace is http://purl.org/db/nosql# (prefix nosql). It contains a hierarchy of

7 https://spark.apache.org
8 http://rml.io
9 The variable part, which is in brackets, is used as the primary key of the entity.

10 http://lov.okfn.org/dataset/lov/

http://purl.org/db/nosql#
https://spark.apache.org
http://rml.io
http://lov.okfn.org/dataset/lov/


NoSQL databases, and some related properties. The hierarchy includes classes
for NoSQL databases, KeyValue, Document, Columnar, Graph and Multimodal.
Each has several databases in sub-classes, e.g., Redis, MongoDB, Cassandra,
Neo4J and ArangoDB, for each class respectively. It also groups the query lan-
guages for several NoSQL databses, e.g., CQL, HQL, AQL and Cypher.

3.2 Data Connector

We leverage here Spark’s concept of Connector, which is a wrapper to load
data from an external source into Spark data structures. The advantage is that,
as Spark has grown in popularity, dozens of data sources developed their own
connectors, offered either by the data source provider itself or by the open-source
community. Spark Packages11, the portal where Connectors are published, counts
around 50 data source connectors.

Spark makes interfacing with a connector and building parallel data struc-
tures as a result very convenient. In most cases, it only requires giving values to
a pre-defined list of options, passed to a connection template (see listing 1.1).
We take advantage of this and create a graphical interface where users obtain
effortlessly the list of available options, they only provide values for keys.

Listing 1.1. Spark connection template

val dataframe = spark.read.format(format).options(options).load

// format is to specify the data source type

On the downside, loading data into parallel data structures in memory is an
extra step that adds up to the overall query response time. However, Spark offers
a number of ways to alleviate this, e.g., by enabling pushing-down operations to
the data source whenever possible, and by caching data so it is loaded only once
at the first time and reused in subsequent queries. We deem this an unavoidable
trade-off between performance and support for variety in Big Data.

3.3 Query Processor: Apache Spark

Spark bases its computation primarily on memory, so it improves upon disk-
based processing engines, like Hadoop. We use, in particular, Spark’s API for
querying structured data: Spark SQL. The parallel data structures in Spark
SQL are called DataFrames and can be queried using SQL, similarly to tables in
databases. We use Spark for implementing the Query Processor. Thus, the POZ
is where Spark stores its data during the computation, i.e., mainly memory, then
disk. DataFrames are the implementation of our ParSets.

Figure 5 shows how stars are translated into SQL queries posed against
DataFrames. Sparkall iterates through the predicates of each star. It visits the
mappings to look for entities having attributes mapping to each of the predicates.
In the figure, the top box (star + mappings) finds one entity about authors.

11 https://spark-packages.org

https://spark-packages.org


Fig. 5. Generating SQL queries on DataFrames starting from star joins.

The entity is loaded into a DataFrame called DFA, and an SQL query is gen-
erated out-projecting the attributes found via the mappings. This reduces the
DataFrame and generates a new one called A (we use the syntax of SQL views
for brevity). Similarly with the star in the middle box, it detects the entity
Institute that is loaded into a DataFrame DFIN and queried generating a new
DataFrame IN . This star is typed (?in a vivo:Institute), hence only entities
typed with this class are taken (?sm rr:class vivo:Institute). If SPARQL
query contains a filter on variables of the star, it is translated into SQL filters
on the DataFrames; this generally is straightforward. The last box is part of the
top one (we separated it for clarity), it shows the join point between the two
stars. It triggers a join between the two DataFrames A and IN , following the
scheme explained in figure 3. The left join variable is the attribute mapping to
the predicate drm:worksFor, and the right join variable is the primary key of
the entity/DataFrame (from rr:template).

3.4 Query Designer

We offer users a graphical interface which allows to create queries using query
blocks, e.g., a block to create stars (requirement R1 in Query Designer archi-
tecture), WHERE clause, TRANSFORM clause (R3), etc. We provide for each query
block a widget where users are guided to only fill values, not construct query
blocks (see figure 6 for transformation widget). In order to build queries that
(potentially) return results, we auto-suggest predicates and classes from the un-
derlying metadata, predicates that appear together in entities (RML mappings)
(R2). Users progressively add stars to the query (R1), by specifying their de-



Fig. 6. Widget of transformation cre-
ation.

SELECT ?l ?c ?vf ?lg ?c1
WHERE {

?p rdfs:label ?l .
?p xmpl:propertyText1 ?pt .
?p mo:producer ?pcr .
?pcr edm:country ?c .
?pcr foaf:homepage ?h .
?o gr:validFrom ?vf .
?o bbc:product ?p .
?r bbc:product ?p .
?r dbpedia -owl:person ?pr .
?r dcterms:language ?lg .
?pr edm:country ?c1 .
?pr a foaf:Person .
FILTER (?c = "DE") .
TRANSFORM (?r?pr.r.replc("ID","").

toInt && ?p?pcr.r.scl ( -109))
}

Fig. 7. Q4’ with transformations.

nominators (subject), a list of attributes and their values (predicate, object),
and optionally a type (class). By visualizing the concept of stars guided by the
interface, users can easily and progressively build an image of the data they
want, and build the query accordingly, e.g., a query with a star of authors,
then one of books, then publishers, etc.

Note that the usage of SPARQL in our approach is not an aim in itself,
but a means to solving the heterogeneity problem. Therefore, we do not seek
to provide a full-fledged SPARQL interface, but rather a subset of its functions
that allow us to join and filter data coming from different sources. For example,
we are not concerned with RDF-specific functions, like isLiteral or isBlank,
etc.

4 Evaluation

We evaluate Sparkall12 effectiveness in fulfilling its purpose: querying Data Lakes
using Semantic Web standards.

Datasets: In order to have full control of the scale and nature of data, we opted
in this first evaluation series for synthetic data. We use the BSBM benchmark13

with e-commerce data in three scales: 500k, 1.5m and 5m (number of products).
In addition to RDF data, BSBM also generates structured data as SQL dumps.
We pick five table dumps: Product, Producer, Offer, Review, and Person tables,
pre-process them to extract tuples and save them in: Cassandra, MySQL, Mon-
goDB, Parquet, and CSV, respectively. In order to evaluate the effectiveness of
the transformations, we intentionally introduce variations to the data so it be-
comes unjoinable. In the table Person, we converted the column pr to text and

12 code: https://github.com/mnmami/sparkall / screencast: https://goo.gl/YFVNup
13 http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

https://github.com/mnmami/sparkall
https://goo.gl/YFVNup
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/


Query 500k 1.5m 5m
Sparkall MySQL Accuracy Sparkall MySQL Accuracy Sparkall

Q1 175.33 1 100% 130.67 1 100% 57.33
Q2 270.33 540 100% 152.67 4200 100% 85.67
Q3 153 1440 100% 207 - - 83.67
Q4 303.33 1380 100% 608 - - 2100
Q4’ 288.67 - 100% 523 - - 1839.33

Table 1. Query performance results (in seconds).

prefixed all its vales with ”ID”. In table Producer, we incremented all the values
of the column pr by 109.

Queries: We created four SPARQL queries: Q1 has one join between two data
sources, Q2 has two joins between three data sources, Q4 queries all the five
data sources. All queries have one filter condition. Q4 comes in two variations:
Q4 is used to query the data as it was generated, and Q4’ is used to query the
data after it has been altered to break the joinability. Figure 7 show Q4’, it
contains transformations that omit the extra prefix ”ID” from the values of the
join variable of ?pr, then convert them to integer type. Then values of the join
variable of ?pcr are subtracted by 109 to reach the values range of the other
join table. The threshold is set to 1800s (30min).

Metrics: We evaluate results accuracy as well as query performance. In the
former we store the same data in a relational MySQL database, create equiv-
alent SQL queries, run them and compare the number of results. We used a
fully ACID-compliant centralized relational database as a reference for accu-
racy, because it represents data at its highest level of consistency. In the latter
we measure the query execution time. For Sparkall, we use Unix time function
on ./spark-submit script execution, so it includes all data preparation, loading
to memory and execution, by Spark. In MySQL, we measured the time when
the query is finished. We run each query three times and compute the average.

Environment setup: We ran our experiments in a small-sized cluster of three
machines each having DELL PowerEdge R815, 2x AMD Opteron 6376 (16 cores)
CPU, 256GB RAM, and 3TB SATA RAID-5 disk. We used Spark 2.1, MongoDB
3.6, Cassandra 3.11 and MySQL 5.7. All queries are run on a cold cache with
default settings, no performance tuning has been applied.

Results and discussion: Table 1 summarizes the results.

Accuracy. We run queries against Sparkall and MySQL. The number of results
returned by Sparkall was always identical to MySQL, hence the 100% accuracy
in all cases. For Q3-Q4 on the 1.5m scale, we were not able to complete queries
against MySQL.

Performance. The results suggest that in medium size data, increasing the num-
ber of data sources and joins does not significantly affect the performance. Note
also that, comparing Q4 and Q4’, the transformations, i.e., transforming the data
to enable the join, did not have an effect on query performance. That confirms
our assumption that, when using main memory as storage during computation,
the transformations are executed very efficiently. The numbers indicate that the
query time of Q4’ is even shorter. Throughout our experiments with Spark and



other distributed systems, we noticed that the performance of identical or simi-
lar computations might differ significantly. This is probably due to the fact that
heavy workloads require shuffling data, which involves the bandwidth factor, in
addition to other factors like the garbage collector performance. The same is
noticed between Q3 and Q2: even though Q3 involves one more join with one
more data source, it was faster than Q2 on average. In the largest scale 5m, Q4
was around the threshold. This is because the query is unselective, and it joins
the results of already unselective query, of 3-joins chain, Q3, with 100m records
of the Offers entity.

5 Related Work

Several approaches for mapping relational databases to RDF exist, of which
R2RML became a W3C standard. There exists a compact Sparqlification Map-
ping Language (SML) mapping language [9] with equal expressiveness to R2RML.
MASTRO[1] provides a proprietary API for ontology-based data access (OBDA),
where the specified ontology is connected to external JDBC enabled data man-
agement systems through semantic mappings. A similar combined approach [6]
incorporates the information given by the ontology into the data and employs
query rewriting to eliminate spurious answers. However, most of these techniques
are tailored towards SPARQL access for a singe RDB. The Optique Platform [5]
represents an example of OBDA adapted for Big Data. The Optique Platform
starts from a conventional OBDA, and hence the general architecture is similar to
Sparkall. However, we both adapt it for different end-goals. Sparkall emphasizes
the variety aspect of Big Data by supporting as many data sources as possible,
while Optique focuses more on the velocity aspect and supports ontology discov-
ery. We, on the other hand, currently have no explicit ontology, but an implicit
one encoded in the mappings, and reserve ontology discovery to future work.
Authors in [3] deal with data heterogeneity. They suggest that performance of
computations can be improved if we switch data, during the computation, be-
tween multiple databases, each used for what it is best for. They show that the
overall performance, including the planning and data movement, is better than
using only one database. However, there is no mention of the scale of the data,
data movement and I/O might dominate the execution time if the data is very
large.

6 Conclusion and Future Work

We presented an architecture for a Semantic Data Lake, and a realization using
Apache Spark able to query up to five different data source types (and even more
leveraging Spark connectors). Our primary goal was enabling users to accurately
query heterogeneous data with only two steps: mapping the data, and querying
the data using a single query language; both further supported with graphical
interfaces. Currently, large datasets and unselective queries result in performance
decrease. In the current version of Sparkall, we did not yet perform extensive



performance tuning and plan this for the next iteration. Further experiments
will shed more light on to what extend can we support the variety dimension
of Big Data while dealing with volume and velocity at the same time. We used
Spark to implement the Query Processor because of its significant number of
ready-to-use connectors but the overall approach is not tied to Spark. In a next
version, for example, we aim to extend support for Flink. The current work can
be seen as foundation for realizing the Semantic Data Lake concept. We plan to
expand on a couple of directions, mainly: design other types of joins between the
ParSets and choose the most suitable one based on a cost model, support more
complex queries with possibly multi-typed stars, explore approaches for learning
and suggesting more suitable mappings, and enable provenance for both data
and query results.
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