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ABSTRACT 
Large Language Models (LLMs), with their advanced architectures 
and training on massive language datasets, contain unexplored 
knowledge. One method to infer this knowledge is through the 
use of cloze-style prompts. Typically, these prompts are manually 
designed because the phrasing of these prompts impacts the knowl-
edge retrieval performance, even if the LLM encodes the desired 
information. In this paper, we study the impact of prompt syntax on 
the knowledge retrieval capacity of LLMs. We use a template-based 
approach to paraphrase simple prompts into prompts with a more 
complex grammatical structure. We then analyse the LLM perfor-
mance for these structurally diferent but semantically equivalent 
prompts. Our study reveals that simple prompts work better than 
complex forms of sentences. The performance across the syntactical 
variations for simple relations (1:1) remains best, with a marginal 
decrease across diferent typologies. These results reinforce that 
simple prompt structures are more efective for knowledge retrieval 
in LLMs and motivate future research into the impact of prompt 
syntax on various tasks. 

CCS CONCEPTS 
• Computing methodologies → Information extraction; Lan-
guage resources; Lexical semantics. 
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1 INTRODUCTION 
Recent advancements in Large Language Models (LLMs) have led 
to signifcant progress in various natural language processing tasks 
such as translation, summarization, and question-answering by 
providing efcient representations of language in a self-supervised 
way. In addition to encoding linguistic and syntactic knowledge 
[7, 9], recent studies have demonstrated [15, 23] that deep LLMs also 
capture relational knowledge, enabling them to support basic ques-
tion answering and reasoning tasks. Petroni et al. [22] show that 
introducing an information retrieval component which captures 
the relevant context from a LLM for a relation or factual question 
signifcantly improves performance in knowledge extraction tasks, 
where the context may include both specifc semantics and syntac-
tic characteristics. Additionally, leveraging of syntactic information 
while training complex language models is shown to improve rep-
resentational quality across languages [26, 28]. Taking into account 
the benefcial infuence of additional syntactical information, it 
seems natural to question the linguistic reliability of contextual-
ized embeddings when testing for relational knowledge retrieval 
and extraction. This is further stressed by the debate on the extent 
to which acquired knowledge generalises beyond the statements 
seen as part of training data [14]. In particular, the generalisation 
of knowledge across diferent syntactic transformations of seen 
relational knowledge defnes a desirable property of reliable LLMs. 
Although an in-depth investigation of the dependencies between 
syntactical-information and relational knowledge in LLMs seems 
promising, it remains underexplored. Based on these insights, we 
investigate the hypothesis that syntactic structure plays a role in 
the inference of knowledge from language models. In this paper, we 
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Typological-transformation Template 

simple 
The capital of [S] is [O] . 
[S] maintains diplomatic relations with [O]. 

compound 
[S] is a country and it’s capital is [O]. 
[S] maintains diplomatic relations with countries and [O] is one of them. 

complex 
[S] is the country, who’s capital is [O]. 
[S] is a country that maintains diplomatic relations with [O]. 

compound-complex 
[O] is a city and it is the city that is the capital of [S]. 
[S] is a country that maintains diplomatic relations with [O]. 

Table 1: Templates for ’capital of’ (1:1) and ’diplomatic relation’ (M:N) 

present initial experiments to study this hypothesis and share man-
ually created prompts with the community 1. We have extended 
T-REx to incorporate diferent grammatical structures alongside the 
relations already provided. The key fndings of our work are that a 
simple sentence structure performs better for relational knowledge 
extraction than complex grammatical constructions. However, the 
impact of sentence structures is negligible for simpler relations 
(1:1). Moreover, these relations are easier to extract than complex 
relations (N:M). 
Overall, this paper is organised as follows: Firstly ( Related Work), 
we briefy cover the state of the relevant research for this paper. 
The main section ( Preliminary Experiments) is then divided into 
four subsections, three of which describe the methodology (Data, 
Task & metrics, Prompt Engineering), while the fnal subsection 
Results presents the performance of diferent models on our earlier 
established experimental setting. We conclude our work with a 
discussion and an outlook (Conclusion and Future Work). 

2 RELATED WORK 
Since the proposal of transformer-based LLMs which learn repre-
sentations through Masked Language Modelling (MLM-task) [2], 
two research felds have emerged: (1) Understanding the knowl-
edge inherent in LLMs [25], and (2) Enhancing the LLMs’ inherent 
knowledge [33]. 
Understanding the knowledge inherent in LLMs: 
Current research generally proposes two diferent methods to test 
the self-taught knowledge of LLMs. (a) Prompts that pose knowl-
edge related tasks in a cloze-text format. This research direction is 
heavily infuenced by the LAMA-probe proposed by [23], a cloze-
text data-set that encodes simple relational facts about real world 
entities. E.g. the prompt ’Where was Dante born [MASK]?’ is paired 
with ’Florence’. Using BERT [2] for predicting missing tokens, the 
authors show that BERT already carried a surprisingly high amount 
of relational knowledge. Following Petroni et al’s [15, 23] fndings, 
Heinzerling et al. [8] focus on entity representations, storage capac-
ity and paraphrased queries. However, they draw a more critical 
picture of storage and query capabilities of these models. More-
over, Roberts et al. [24] investigate how much knowledge can be 
stored in model parameters. To approximate the storage capacities, 
they over-ft the model on knowledge triples. Since then, many 
probing-suites have been published to understand the impact of 

1https://github.com/Thrasolt/ContextualKnowledgeOfLMs 

memorization and knowledge types (KMIR [6], KAMEL [13]). Fur-
thermore, the performance improvements which were achieved 
through fne-tuning LLMs on the provided prompts were investi-
gated. For this, an archive with diferent prompts as well as train, 
validation, and test-splits for the T-REx subset of the LAMA-probe 
called LPAQA [12] was created. (b) In addition to prompts, probing 
tasks are often used to investigate the knowledge encoded in LLMs. 
This method uses auxiliary classifcations with features derived 
from the frozen network to understand inherent information. For 
the example of transformer-based language models, probing tasks 
can be solved by using the output representations [29], the atten-
tion information [1] or the information change across the diferent 
layers [11, 29]. The information derivable from those features has 
been used to understand several aspects of the contextualization of 
the representation [29], the syntactic truthfulness of the attention 
mechanism [1], and the workfow of the layer-wise processing [11]. 
Enhancing the LLMs inherent knowledge: 
Various types of information are used to enhance the model’s in-
herent knowledge. Approaches range from enhancing lexical word 
relations [18], in-context semantic abstractions [19], sentiment sen-
sitivity [17, 30], and entity centred information [5, 21] to improving 
any knowledge type [20, 31]. Knowledge enhancement approaches 
also difer in their infusion technique. Proposals that stay the clos-
est to pure language modelling only change the probabilities of 
the corruption task in a way in which it teaches stance- [16], or 
entity-knowledge [27]. Another infusion strategy tries to enhance 
the model by simultaneously teaching a secondary learning objec-
tive. This is applied to entity- [32], sentiment- [30] and general 
linguistic knowledge [20]. 
In this paper, we focus on understanding the knowledge inherent in 
LLMs. In particular, we aim to study the impact of syntactical difer-
ences while treating LLMs as a black box model. In comparison to 
Heinzerling et al. [8], we test paraphrasing motivated by linguistics. 
Additionally, we open the feld for new probing-tasks [29], i.e. how 
sentence processing [11] impacts knowledge inference. Thus, we 
gain insight into information encoding and potential directions for 
knowledge enhancement strategies. 

3 PRELIMINARY EXPERIMENTS 

3.1 Data 
In this work, we propose that utilizing cloze-text prompts ofers 
a direct means of studying the impact of syntactic features on 
knowledge retrieval in language models. Knowledge capturing 
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Model Simple Compound Complex Compound-complex 

BERT-large-cased 
BERT-base-cased 

BERT-base-multilingual-cased 

30.22 
28.19 
19.99 

16.28 
12.40 
13.40 

16.99 
12.95 
13.39 

17.99 
15.77 
10.97 

BERT-large-uncased 
BERT-base-uncased 

BERT-base-multilingual-uncased 

3.38 
3.07 
3.50 

1.10 
0.75 
0.60 

1.20 
1.54 
1.83 

0.47 
0.77 
0.39 

Table 2: Knowledge Retrieval Model Comparison with T-REx Data Set for average top-1 metric in percent (#Triples=34039) 

Model Simple Compound Complex Compound-complex 

BERT-large-cased 
BERT-base-cased 

BERT-base-multilingual-cased 

58.48 
57.74 
39.29 

41.76 
37.32 
33.36 

43.73 
39.82 
30.68 

42.82 
38.96 
32.17 

BERT-large-uncased 
BERT-base-uncased 

BERT-base-multilingual-uncased 

11.34 
9.33 
9.40 

6.51 
6.78 
4.31 

6.38 
6.07 
5.29 

5.14 
5.36 
3.54 

Table 3: Knowledge Retrieval Model Comparison with T-REx Data Set for Average top-10 Accuracy in percent (#Triples=34039) 

Cardinality #Triples #Relations 
1:1 937 2 
N:1 20006 23 
N:M 13096 16 

Total 34039 41 
Table 4: Properties of the T-REx [23] 

prompt-templates were frst used in the LAMA-probe [23]. Those 
templates enable the parsing of a subject and object tokens to form 
a correct sentence. In the test prompts, the mask token replaces the 
correct object-token. Thus, the model tries to predict the correct 
object for a given preflled prompt. We give an example of such 
samples here for relations ((1) P36, (2) P108, (3) P136): 

Template: 
(1) "The capital of [S] is [O] ." 
(2) "[S] works for [O] ." 
(3) "[S] plays [O] music ." 
Prompt: 

(1) "The capital of France is [MASK]." 
(2) "Tim Cook works for [MASK]." 
(3) "Bruno Mars plays [MASK] music." 
Parsed: 

(1) "The capital of France is Paris." 
(2) "Tim Cook works for Apple." 
(3) "Bruno Mars plays funk music." 

The T-REx subset of the LAMA-Probe relies on the T-REx knowl-
edge base [4] derived from Wikidata triples. The 34039 triples are 
organized into 41 diferent Wikidata relations. For each relation, no 
more than 1000 facts are sub-sampled. All relations have a maximum 
of 995 and a minimum of 225 facts, with most relations specifying 
more than 900 facts. The 41 relations cover all possible cardinality 
types 1 : 1, � : 1 and � : � . 

3.2 Task & metrics 
In this work, we have limited our typological paraphrasing to the 
T-REx triples (and corresponding relations) of the LAMA-probe. 
Given a set of four syntactical typologies � , and a set of subject-
relation-object triples < �, �, � > named � , we transform � in a set 
of tuples �� = {< ��

� , � > | < �, �, � >∈ �}. This is achieved by 
describing each � through a prompt written with the typology � 
named �� . We can use this prompt to parse � so that we obtain ��

� , 
� is the cloze-prediction target. Given such a set �� , we measure 
the performance of a model � for typology � , by calculating the 
top-k accuracy for all tuples in �� . Í 

(��� ,� ) ∈�� 
1 (� ∈ top-k� (��� )) top-k� accuracy = (1)|�� | 

Where � is the correct label, top-k� are the � predictions with the 
highest probability assigned by the model �, |�� | is the number of 
samples, and 1 is the indication function. In our results, we consider 
���-{1, 10}� ��������. This can be noted that ���-1������ �������� 
is virtually equal to the evaluation conducted by Petroni et al. [23] 
with the � @1 metric. 

3.3 Prompt Engineering 
The LAMA-probe contains a simple sentence template for each of 
the 41 relations in the T-REx data. The ftness of these templates is 
manually improved and tested by Petroni et al. [23]. Therefore, they 
represent a natural starting point for our syntactically motivated 
prompt paraphrasing. Expanding this template to diferent syntacti-
cal structures ofers insight into the impact of such a transformation 
on the same knowledge task. We have used four typological trans-
formations, one of which is the same as the LAMA template. Thus, 
we create three new prompt templates for each of the 41 relations in 
T-REx. The resulting four templates provide a unique grammatical 
structure, which is theoretically guided by the research of Rodney 
Huddleston [10]. In our sentence typology, a simple sentence defnes 
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Results Simple Compound Complex Compound-Complex #Triples 

Total 
1:1 
N:1 
N:M 

30.22 
70.65 
35.07 
18.77 

16.59 
69.48 
18.36 
8.61 

16.08 
67.56 
18.18 
10.65 

17.87 
58.16 
20.01 
11.24 

34039 
937 
20006 
13096 

Table 5: top-1 Accuracy in Percent of Bert-Base-Cased on the T-REx Data Set 

Results Simple Compound Complex Compound-Complex #Triples 

Total 58.48 42.18 42.75 43.09 34039 
1:1 85.17 84.95 84.31 81.32 937 
N:1 65.96 43.49 48.47 45.40 20006 
N:M 43.57 36.62 29.70 36.18 13096 

Table 6: top-10 Accuracy in Percent of Bert-Large-Cased on the T-REx Data Set 

a sentence that contains only one main clause (LAMA-probe tem-
plates). A sentence that includes two or more independent clauses 
is known as a compound sentence, while a sentence that contains 
an independent clause and one or more dependent clauses is known 
as a complex sentence. Lastly, a sentence that includes two or more 
independent clauses and at least one dependent clause is known 
as a compound-complex sentence. Table 1 shows an example of the 
four templates for the 1:1 relation P36, describing the predicate 
’capital of’, and the M:N relation P530, describing the ’diplomatic 
relation with’. 

3.4 Results 
We applied these template-based-prompts to three BERT variants: 
BERT-large, BERT-base, and BERT-base-multilingual. We include 
multilingual BERT to understand the impact of named entity men-
tions in diferent languages. Our experiments show that all investi-
gated LLMs perform best on the simple sentence type. Additionally, 
we discover that the cased models outperform the uncased models 
by a large margin. 

Table 2 shows the top-1 accuracy for each model in percent for 
all four sentence types. We report slightly worse results for the 
top-1������ accuracy (BERT-base-cased -3.0, BERT-large-cased -1.1) 
on the LAMA-probe than in the original paper [23]. In contrast 
to Petroni et al. [23], we consistently evaluated over the whole 
vocabulary, which had a notable infuence on the reliability of the 
results for the N:M relations. Specifcally, Petroni et al. [23] exclude 
all other valid entities except for the one they test. Nonetheless, 
our results are reasonably close, given diferent reported results 
on the same data in other works [34]. Generally, the values of the 
correct tokens are surprisingly high. The best model was able to 
predict one-third of the masked tokens correctly. However, most 
comparable results achieved by the cased models are around 15 
to 20 percent accurate. Most importantly, the average top-1 accu-
racy varies signifcantly between diferent sentence types. Thus, 
indicating grammatical structure infuences a model’s ability to 
retrieve relational knowledge. This is true for all models under 
investigation. 

From this, we draw four conclusions: First, the BERT-large-cased 
model outperforms all other models on all four sentence types by 

at least two and at most four percentage points. Second, there is 
a chasm in performance between cased and uncased models, as 
the accuracy of uncased models is comparatively low. Third every 
model has a higher prediction accuracy when queried with the 
simple sentence compared to the other three types. Finally, the 
diferences in scores among the non-������ sentence types are 
signifcantly lower than the variations within the ������ sentence 
type. These observations also apply to the results based on the 
top-10 accuracy, albeit with the expected higher accuracy results, 
see Table 3. 

Table 5 and Table 6 show the average accuracy results for the 
four sentence types for each of the cardinality relations for top-1 
and top-10 for the BERT-large-cased model. Both results show that 
the ������ sentence type enables a higher accuracy for all three 
cardinalities. Additionally, in both sets of results, the performance 
decreases with increasing cardinality, which is intuitive, as the 
difculty level increases with the number of possible subjects and 
objects. For N:M relations, top-1 is an inappropriate metric, as only 
one guess is allowed per subject. 

The results are the closest for the cardinality 1:1 and furthest 
apart for N:M, thus implying that the relation extraction works 
best for simple sentence types and simple relations (1:1). The per-
formance noticeably decreases when either sentence or relation 
complexity increases. Additionally, the sentence structure (typol-
ogy) has close to no infuence on the top-10 performance for the 
simple relations (1:1). However, the relations with less mutual infor-
mation between subject and object co-occurrence (N:1, M:N) show a 
large decrease in performance for changes in the sentence-typology. 
Hence, the MLM-task does not incorporate the rules of syntactical 
change while keeping semantic equivalence. 

4 CONCLUSION AND FUTURE WORK 
In this paper, we investigate the impact of prompt syntax on the 
knowledge retrieval performance of LLMs. To achieve this, we 
expand the well-known and commonly used T-REx subset of the 
LAMA-probe to support diferent syntactical structures of prompts. 
our preliminary results show, that the impact of syntax is only mar-
ginal for simple relations (1:1). In general, simple prompts should 
be the preferred way of querying. Most importantly, we show that 
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LLMs indeed struggle to generalise knowledge across grammatical 
structures. This fnding highlights the importance of the relation-
ship between syntax and semantics within LLMs as a crossroad of 
human and machine language representation. Consequently, we 
will focus on a deeper analysis of the disparities in information 
coding for typologically diferent templates. These disparities may 
be refected in the attention mechanism [1], the predicted token-
distribution [3] or the diferences in mask representation among 
the various typologies per relation. 
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