
Anomaly Detection for Numerical Literals in
Knowledge Graphs:

A Short Review of Approaches

Farshad Bakhshandegan Moghaddam
University of Bonn

Bonn, Germany

farshad.moghaddam@uni-bonn.de

Jens Lehmann
TU Dresden, Amazon

(work done outside of Amazon)

Dresden, Germany

jens.lehmann@tu-dresden.de

Hajira Jabeen
GESIS-Leibniz Institute for the Social Sciences

Cologne, Germany

hajira.jabeen@gesis.org

Abstract—Anomaly Detection is an important problem that
has been well-studied within diverse research areas and ap-
plication domains. However, within the field of Semantic Web
and Knowledge Graphs, anomaly detection has been relatively
overlooked. Additionally, the existing literature on anomaly
detection over Knowledge Graphs lacks proper organization and
poses challenges for new researchers seeking a comprehensive
understanding. In light of these gaps, this paper aims to offer a
well-structured and comprehensive overview of the existing re-
search conducted on anomaly detection over Knowledge Graphs.
In this overview, we review the quality metrics of KGs and discuss
the possible errors which may occur in different parts of the RDF
data. Additionally, we outline a generic conceptual framework for
the execution pipeline of Anomaly Detection over KGs. Moreover,
we study the anomaly detection techniques, along with their
variants, and present key assumptions, to differentiate between
normal and anomalous behavior. Finally, we outline open issues
in research and challenges encountered while adopting anomaly
detection techniques for KGs.

Index Terms—Anomaly Detection, Knowledge Graphs, Outlier
Detection, RDF Data, Semantic Web, Linked Open Data

I. INTRODUCTION

With the ever-increasing amount of data available on the

Internet, it is becoming vitally important to have a set of

tools to extract meaningful and hidden information from the

data. The Semantic Web can create a structural view of

existing web data and provides machine-readable formats [1].

To facilitate this, the World Wide Web Consortium1 intro-

duced the Resource Description Framework (RDF)2 as a

standard to model the real world in the form of entities

and their relationships. RDF data are a collection of triples

<subject,predicate,object> with rich relationships

that can form a potentially huge and complex RDF graph.

Nowadays, many companies in science, engineering, and

business, including bio-informatics, life sciences, business

intelligence, and social networks publish their data in the RDF

format. Furthermore, the Linked Open Data Project initia-

tive [2] has aided the Semantic Web in gaining traction over

1https://www.w3.org
2https://www.w3.org/RDF/

the last decade. The Linked Open Data (LOD) cloud currently

comprises more than 10,000 datasets available online3 using

the RDF standard.

KGs are being exploited in different real-life use cases

such as search engines, industry, medical science, and many

more. However, to gain the maximum benefit, the KGs should

assure a certain level of quality. This is not a problem per se,

because quality typically denotes suitability for a certain use

case [3]. KGs are being produced in a variety of ways. Crowd-

sourcing was used to create some KGs, such as Wikidata [4]

and Freebase [5]. Natural language processing techniques were

used to create NELL [6], and DBpedia [7] and YAGO [8]

were automatically constructed by knowledge extracting tools.

Typically, when the entered data lacks restrictions and cross-

validation, KGs become vulnerable to different types of errors

due to the diverse approaches and freedom in input data

insertion. These errors can happen at logical or semantic levels

and can occur at subject, predicate or object part of

the RDF (check Section II for more information).

One means of finding these errors in KGs is Anomaly

Detection (AD). AD is a sub-field of data mining dedicated

to the discovery of uncommon events in datasets and has

several high-impact applications in sectors such as security,

finance, health care, law enforcement, and much more [9]. It

is the task of identifying data points and patterns that do not

conform to the previously specified behavior of the data. AD

is already a well-studied field with the focus specifically on

the task of anomaly detection in non-relational datasets [10].

Over the years, numerous techniques have been developed for

detecting outliers and anomalies (anomaly and outlier will be

used interchangeably in this paper) in unstructured collections

of multidimensional points. However, with the current interest

in large-scale heterogeneous data in Knowledge Graphs (KGs),

most of the traditional algorithms are no longer directly

applicable to KGs due to scalability and RDF complex data

structure. Furthermore, to the best of our knowledge, there

has not been a lot of dedicated research work on anomaly

3http://lodstats.aksw.org/
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detection on KGs. Therefore the aim of this paper is to provide

a general, short but comprehensive, and structured overview of

the already existing approaches for anomaly detection in data

represented as RDF. As a key contribution, our investigation

delves into the anomaly detection problem on KGs from

various perspectives. We thoroughly examine the different

techniques and methods already employed for this purpose.

A. Goal and scope of this survey

As KGs are finding their way in day-to-day usage, produc-

ing high-quality KGs and controlling their quality is playing

an important role. KGs may contain multiple and various types

of errors (Section II), however, the scope of our survey is to

provide an overview of AD approaches for finding anomalies

in literals. This decision was influenced by the fact that outlier

detection predominantly revolves around numeric data, making

numeric literals a logical focal point. Moreover, most of the

already existing research in this area focuses on outliers in

numerical literals.

B. Article Collection Methodology

The goal of this review is to provide a theoretical frame-

work that can be applied to a wide range of approaches

for AD in KGs. In conducting this survey, we used the

Keyword Search protocol and considered Google Scholar as

an academic database. Keywords such as outlier detection,

anomaly detection, knowledge graphs, Numeric Literals, etc

are considered to fetch the result. Upon careful examination of

the findings, we retained the papers that specifically addressed

the utilization of AD techniques on numeric literals in KGs.

C. Contributions

More specifically, this article makes the following contribu-

tions:

- a short review of existing AD approaches on KGs for

numeric literals

- introducing the frequently used AD techniques over KGs

- presenting open issues in research and challenges faced

while adopting anomaly detection techniques for KGs

The remainder of the paper is organized as follows: We start

with introducing KG quality metrics and possible errors which

may occur in KGs in Section II. In Section III we define

anomaly and anomaly detection types. In Section IV AD

methods over KGs and underlying techniques are introduced.

Section V covers existing works in the area of anomaly

detection over numeric literals. Finally, Section VI concludes

the paper by introducing open challenges and possible future

directions.

II. ERRORS IN KGS

KGs are used in a range of applications such as seman-

tic search, question-answering systems, and recommendation

systems [11]–[13]. The quality of a KG is essential for its

effectiveness in a particular application, so it is important to

carefully control the quality of KGs during their construction

and maintenance. There are various methods for building

KGs, but they can also potentially compromise the quality

of the final result. Therefore, it is important to carefully

monitor the quality of each step in the construction process and

identify the specific quality dimensions that may be impacted.

Additionally, KGs must be regularly maintained and updated

to remain current and meet changing requirements. Moreover,

to uphold the overall quality, it is imperative to rectify any

errors that might have been introduced during the construction

process of the KG. The quality of the KG can be viewed as

a multi-dimensional topic. There is a significant amount of

work has been conducted to evaluate the dimensions of KG

quality. The most high-level dimensions are: a) Accuracy [14]

b) Completeness [15] c) Consistency [16] d) Timeliness [17]

e) Trustworthiness [18]

Table I lists the dimensions, definitions, and examples.

Although there exists a correlation among these dimensions,

however, it is beyond the scope of this paper to analyze

the dependency and correlation between each dimension; we

refer the reader to previous survey publications for a thorough

discussion [19].

Each of the main dimensions can be divided into sub-

dimensions and there are many works conducted to mathemati-

cally define and evaluate the metrics [14], [20]–[22]. However,

this paper solely concentrates on the metric of Accuracy
(Precision), as outliers play a crucial role in determining the

accuracy of a KG. The accuracy of a KG reflects the extent

to which the knowledge it contains aligns with established

facts. This is considered the most crucial aspect of KG quality.

Factors that can negatively impact the accuracy of a KG

include incorrect relations, entities, and attributes within the

graph.

RDF data are a collection of triples

<subject,predicate,object> so the error may

happen in the subject, predicate, or object position.

subject can be an entity or a blank node, object can also

take an entity, a blank node, or a literal value with different

primitive types (String, Integer, Date, ...). In the following,

we explain possibilities based on the anomaly position.

A. subject

Anomalies can happen in the subject position. subject
can be blank nodes or URIs. If the anomaly occurs when

the subject is blank node, detecting is not straightforward

because other triples also should be considered. However,

if the subject is a URI, the correctness of the triple

based on the subject can be checked. For example, in

<dbr:Film,dbp:leaderName,dbr:Joe_Biden>,

dbr:Film can be considered as an anomaly

because it does not conform to the pattern of

<Country,dbp:leaderName,Person> as dbr:Film
is not of type Country. Ontological rules can check this

type of anomaly. Worth to note that, we distinguish here the

wrong values and anomalies. For example dbr:Germany in

<dbr:Germany,dbp:leaderName,dbr:Joe_Biden>
is a wrong value however, it does not conflict with any
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obvious pattern of data. These types of errors can be detected

and fixed by fact-checking methods [23].

B. predicate

In the predicate position two types of anomaly may

occur. Either the predicate itself can be an anomaly, for

example, <dbr:Barack_Obama,dbo:elevation,61>
is an anomalous triple, as dbo:elevation can not be

used for the type Person but City. Another error happens

when an entity has more/less than the usual number of the

same predicate. For example, a person should have only one

birthplace. However, if he/she has, for example, 5 birthplaces,

then this type of (potential) error can be detected.

C. object

As objects mostly contain literals, they can be a poten-

tially good source for anomalies. In case the object is a URI,
the same approach can be applied as subject. However, if

the object is literal (especially numeric literals), multiple

types of anomalies can happen. For example, dbp:year can

not take negative numbers. Or dbo:postalCode can not

take big integers. For more examples in this category, we refer

the reader to [21], [24], [25].

In this review, we introduce the existing works in the

area of anomalous numeric literals. So almost all of the

existing works which are mentioned in Section V focus on

anomaly detection on objects especially when they have

numeric literals [24]–[28]. Although some works try to address

anomalies in predicates as well [24], [29].

III. DEFINITION OF ANOMALY DETECTION

The first and most widely used definition of an outlier dates

from 1980 and is given in [30]:

“An outlier is an observation that differs so much from other
observations as to arouse suspicion that it was generated by
a different mechanism.”

As the definition indicates, anomalies are not necessarily

wrong values but values that do not conform with normal

data behavior. Outliers are also referred to as abnormalities,

discordants, deviants, or anomalies in the data mining and

statistics literature [31]. Anomaly Detection is a well-studied

area and found its way to many real-world scenarios such as

Intrusion Detection Systems, Financial Fraud Detection, IoT

and sensor data, Medical Diagnosis, Law Enforcement, Earth

Science, and many more [31].

We need to distinguish the difference between outlier and

natural outliers. Natural outliers are the values that are not

wrong. For instance, if we compare the height of a building (α)

with the height of animals (β) which α >> β then the height

of the building will be considered as an anomaly however, if

we only compare the height of different building together, most

probably the α value will not be detected as an anomaly. These

types of anomalies are called natural outliers. Thus, when

using outlier detection to find errors in data, special care must

be taken to distinguish natural outliers from outliers caused

by actual data errors.

Anomaly Detection techniques can be categorized from

different aspects. Generally, they can be grouped to supervised,

semi-supervised, and unsupervised. Moreover, the methods

can be categorized as neighbor-based, subspace-based, and

ensemble-based detection methods. Based on the number of

features they are being applied, the methods can be classified

as univariate or multi-variate. Although a comprehensive

review of anomaly detection techniques is beyond the scope of

this paper; we refer the reader to previous survey publications

for a thorough discussion of such approaches [9], [10], [32].

Supervised and semi-supervised approaches require training

data in which outlier/normal values are labeled. In contrast,

unsupervised approaches do not rely on any labeled training

data. As the creation of labeled training data would be rather

expensive and labor extensive, the mostly used outlier detec-

tion methods are unsupervised.

The primary objective of Neighbor-Based Detection meth-

ods is to identify outliers using neighborhood data. For ex-

ample, the anomaly score of a data point can be defined as

the average distance or weighted distance to its k nearest

neighbors [33], [34]. Another approach is to consider the Local

Outlier Factor (LOF) [35] as the measurement of anomaly

degree, in which the anomaly score was measured relative

to its neighborhood. In contrast, methods in Subspace-Based
Detection attempt to project high-dimension data to lower di-

mensions and then search for anomalies. The reason for this is

that anomalies frequently exhibit abnormal behavior in one or

more low-dimensional sub-spaces. The full-dimensional anal-

ysis would obscure low-dimensional abnormal behaviors [36].

For example [37] demonstrated that for an object in a high-

dimensional space, only a subset of relevant features provides

useful information, while the rest is irrelevant to the task. In

the literature, subspace learning is a popular technique for

dealing with high-dimensional problems [38]–[41]. Aside from

that, the Ensemble-Based Detection method detects anomalies

by utilizing various learning techniques or even multiple sub-

spaces at the same time. Because of the complexity of the data,

none of the outlier detection methods can detect all anomalies

in a low-dimensional subspace. One ensemble strategy is, for

example, summarizing the anomaly scores and selecting the

best one after ranking [42].

If the AD approach considers multiple dimensions of data at

once (for example considering longitude and latitude together

to detect a geo-coordinate as an anomaly) it is called multi-
variate and if it just utilizes a single dimension (for example

only checking the age of people to detect anomalies) it is

called univariate.

IV. ANOMALY DETECTION OVER KGS

As explained in Section II, different types of errors can be

hidden in the different dimensions of Knowledge Graphs. Most

of the already existing research in this area, focuses on outliers

in numerical literals [24]–[28]. These methods try to find

anomalies on single literal value. That is, given one property,

such as dbo:elevation, representing the elevation of a

place, these methods want to detect anomalous values that are
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TABLE I: Definitions of evaluation dimensions

Dimension Definition Example (anomaly)

Accuracy Correctness of facts (Barack_Obama, birthPlace, Germany)

Completeness Coverage of Knowledge by the KG -

Consistency Degree of self-contradiction in the KG
(John, spouseOf, Mary)
(Mary, sisterOf, John)

Timeliness Degree to which knowledge is up-to-date (Barack_Obama, presidentOf, USA)

Trustworthiness Degree of objectivity, authority, and verifiability
of a KG

-

used as literal objects of that property. Furthermore, collecting

all values of a specific attribute, such as weight, and attempting

to perform anomaly detection for this attribute is conceptually

incorrect in KGs. The reason is that the same predicate

can be used for different types of entities. For example, the

weight of vehicles can not be compared to the weight of

animals. Therefore, to overcome this problem, the existing

works use a mechanism to cluster entities before applying

anomaly detection techniques. Moreover, there should be a

mechanism to first extract features from KG before applying

any anomaly detection techniques.

Figure 1 depicts the standard pipeline of anomaly detection

over KGs and Table II summarizes the existing approaches and

their main characteristics which are explained in Section V.

Below, we provide a brief introduction to the commonly used

feature extractors, clustering methods, and anomaly detection

algorithms.

A. Feature Extractor

Before being able to run anomaly detection on KGs, the

KG should be featurized (also referred to as vectorization or

prepositionalization). This step generates features from KGs

and prepares machine learning-friendly features for subsequent

processes. There are plenty of works in the area of preposi-

tionalization [43]–[46], however, in this paper we only focus

on those which have been used for the anomaly detection

purposes.

1) FeGeLOD: FeGeLOD [27] is an open-source and un-

supervised approach for enriching data with features derived

from LOD. This approach uses six unsupervised feature gener-

ation techniques to explore the data and fetches the features. It

uses 6 predefined SPARQL queries to extract information from

KGs and comprises three subsequent steps: entity recognition,

the actual feature generation, and the optional selection of a

subset of the generated features.

2) Literal2Feature: Literal2Feature [47] is a generic, dis-

tributed, and a scalable software framework implemented over

Apache Spark4 (which is a scalable, in-memory, general-

purpose cluster computing framework) that can automatically

transform a given RDF dataset to a standard feature matrix

by deep traversing the RDF graph and extracting literals to a

given depth. It uses a scalable Breadth-First Search (BFS [48])

to traverse the KG and returns a SPARQL query that extracts

4https://spark.apache.org/

the features. This option allows the user to extract features that

are not in the immediate vicinity of an entity for the purpose

of outlier detection.

3) Pivoting/Grouping: Pivoting is a data reshaping mecha-

nism that produces a “pivot” table based on predicate values.

The example below shows how pivoting works on a sample

RDF dataset if one wants to pivot the Listing 1 based on

“Predicate” and aggregate over “Object”. This approach only

generates features that are in the direct vicinity of an entity.

B. Clustering

To be able to achieve precise anomaly detection results and

avoid natural outliers, one needs to perform clustering over

entities to avoid comparing, for example, the height of animals

with the height of buildings. In this section, we briefly explain

the clustering approaches used in anomaly detection over KGs.

1) Clustering by rdf:type: For this approach, all types

of an entity one-hot encoded to a vector of boolean values,

representing whether or not the entity is of a certain type.

Afterward, any traditional clustering techniques such as Es-

timation Maximization (EM) [49] or K-Means [50] can be

applied to the vectors to cluster the entities. This approach

has been used in [26] however, it is only applicable to the

RDF dataset which contains rdf:type information.

2) Clustering with Constraints: This approach is introduced

in [28] that generates sub-populations of data based on classes

and properties, and subsequently applies outlier detection to

these sub-populations. For example, when considering a com-

plete dataset, the populations of continents would be regarded

as outliers due to their significantly higher magnitude com-

pared to the predominant population values observed in cities

or countries. A lattice is used to overcome this issue. Each

node of the lattice is given a set of constraints that determine

which instances are considered at that node. Because the root

node has an empty constraint set, it represents all instances

and corresponding values of the currently considered property.

Each child node has one more constraint than its parent (a

constraint can be an extra property, an extra class type, etc.).

This allows the data to be divided into subpopulations. In this

lattice, a leaf node refers to a node that adding additional

constraints does not alter the number of instances contained

within it.

3) Clustering by LHD: As for some entities, the

rdf:type information could be missing, [25] introduced a

new way of clustering based on Linked Hypernyms Dataset
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Fig 1: Standard Anomaly Detection pipeline over KGs

Listing 1: RDF data pivoting

(LHD) [51]. LHD contains types from the DBpedia names-

pace that have been extracted from the opening sentences of

Wikipedia articles written in various languages. The identifi-

cation of these types was accomplished by employing Hearst

pattern matching on the text annotated with part-of-speech

tags, and then disambiguating them to align with DBpedia

concepts. Moreover, [25] used Locality Sensitive Hashing

(LSH) [52] for creating clusters (they called the clusters

cohorts because the same data can appear in more than one

cluster). LSH is an important class of hashing techniques that

hashes data points into buckets, so that the data points which

are close to each other are in the same buckets with high

probability, while data points that are far away from each

other lie in different buckets. [25] used rdf:type and LHD

information to create vectors and then hashed it based on LSH

and further generated cohorts.
4) Clustering based on Semantic Features: Most clustering

algorithms require a mechanism to calculate the similarity

between different data points. In [24], authors used a mecha-

nism to incorporate semantic features for calculating similarity

called DistSim [53]. DistSim has different modes for calcu-

lating semantic similarity. For instance considering outgoing

links, incoming links, a combination of predicates and objects,

and many more. One intuitive way of calculating similarity

for clustering entities could be using the predicates as main

features (Outgoing Relation mode in [53]). In short, in this

mode, two entities will be similar if they share many common

predicates. This aids the clustering algorithm in grouping

similar entities.

C. Anomaly Detection Algorithms

As already mentioned, most of the existing works focus

on univariant anomaly detection methods (except [24], [29]).

So in this section, we briefly summarize the already in-use

anomaly detection algorithms in [24]–[29].

1) Interquartile Range: The IQR [54] technique is a statis-

tical metric that is based on calculating the first quartile (Q1),

the median (Q2), and the third quartile (Q3) of a numerical

dataset. The difference between Q3 and Q1 is called IQR.

Outliers are data points that are less than Q1−1.5×IQR and

more than Q3 + 1.5× IQR.

2) Median Absolute Deviation: MAD [55] is a measure of

the variability of a univariate sample of numeric data. The

MAD for a data collection X = {x1, x2, ..., xn} is defined as

the median of the absolute deviations from the median of the

data. So if x̃ = median(X) then: MAD = b×median(|xi−
x̃|) where b is a constant that changes with the distribution.

The values in X that are more than x̃+2.5×MAD and less

than x̃− 2.5×MAD are outliers. MAD is more resistant to

data set outliers than the standard deviation technique.

3) Z-Score: Z-Score is the number of standard deviations

by which the value of a raw score (i.e., an observed value or

data point) is above or below the mean value of what is being

observed or measured. Positive standard scores are assigned

to raw scores that are greater than the mean, while negative

standard scores are assigned to raw scores that are less than

the mean. For example, a Z-Score of 1.5 indicates that the data

point is 1.5 units away from the mean, indicating that it can be

an outlier. The Z-Score is defined as: z− score = x−μ
σ where

μ is the mean of the data and σ is the standard deviation.

4) Kernel Density Estimation: KDE [56] is a non-

parametric approach for estimating the probability density

function of a random variable. The kernel density estimator

of density f is: f̂h(x) = 1
n×h

∑n
i=1 K(x−xi

h ) where K is a

non-negative function, and h > 0 is a smoothing parameter. To
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obtain outlier scores for a given dataset, firstly a KDE should

be constructed from the data and then the resultant probability

at each point should be calculated. To put this probability into

context, it should be compared to the mean probability across

all points. Then a predefined threshold can be used to produce

a binary classification.

5) Local Outlier Factor: LOF [35] is one of the density-

based anomaly detection approaches. The fundamental idea

behind the local outlier factor revolves around local density. In

this context, locality is determined by considering the k nearest

neighbors, and their inter-distance is utilized to approximate

the density. Regions with similar densities and spots with

much lower densities than their neighbors can be detected by

comparing an object’s local density to the local densities of

its neighbors. These are known as outliers.

6) Global Anomaly Score: GAS is one of the most fre-

quently used nearest-neighbor algorithms. The anomaly score

is either set to the average distance of the k nearest neighbors,

as recommended in [34], or to the distance to the kth neighbor,

as proposed in [33]. It is worth noting that the first strategy is

far more resistant to statistical variations.

7) One-Class SVM: One-class SVM is a multi-variant

anomaly detection algorithm which unlike traditional SVM

aims to develop a decision boundary that produces the greatest

separation between the points and the origin [57]. One-class

SVM projects data into a higher dimensional space using the

kernel’s implicit transformation function, ϕ(·). The algorithm

then learns the decision boundary (a hyperplane) that separates

the bulk of the data from the origin. Only a few data points are

allowed to fall on the opposite side of the decision boundary;

these data points are known as outliers.

8) Isolation Forest: IF [58] is also a multi-variant anomaly

detection algorithm that identifies anomalies through isolation.

Same as Random Forests, Isolation Forest is built upon deci-

sion trees and generates an ensemble of isolation trees from

the training data. The Isolation Forest approach is based on the

fact that anomalous examples in a dataset are easier to isolate

(separate) from the rest of the regular points. In IF, randomly

sub-sampled data is processed in a tree structure based on

randomly selected features. Anomalies are less likely to arise

in greater-depth samples because they require more cuts to be

separated. Similarly, samples that end up in shorter branches

indicate anomalies.

V. EXISTING WORKS

So far the Anomaly Detection workflow, techniques, and

approaches described. Now in this section, we cover the

existing works which have been carried on the area of AD

over KGs.

One of the early works in the area of detecting incorrect

numerical data in DBpedia is [26]. The authors argued that

the traditional outlier detection approaches are limited by the

existence of natural outliers and performed the process of

finding numerical outliers in two steps. In the first step, all

types of an entity are considered as a vector of boolean values

(one-hot encode), representing whether or not the entity is of

a certain type. The authors used the FeGeLOD framework

for vectorizing the entities and did the clustering with the

Estimation Maximization (EM) algorithm [49], using the im-

plementation in WEKA [59]. In the next step, the outliers are

detected. The authors have compared different outlier detection

techniques, such as IQR, KDE, and dispersion estimators, and

reported that IQR performs the best. In addition, they reported

that the run-time on datasets containing only two properties-

DBpedia-owl:populationTotal and DBpedia-owl:elevation is

over 24 hours due to the slow clustering algorithm.

In another work [28], which is close to [26], an outlier

detection method is introduced that cross-checks the results

of outliers by exploiting the “sameAs” properties in the

knowledge graph. Outlier detection is accomplished through

dataset inspection using specialized SPARQL queries against

the knowledge graph. The authors begin by selecting the

interesting properties for outlier detection. The sub-population

is generated in the second step by applying a set of constraints

(top-down ILP algorithms) to classes, properties, and property

values. This exploration is laid out as a lattice, with the root

node consisting of a property and the number of instances

that correspond to it. After the lattice has been generated, the

outliers on all unpruned nodes of the lattice must be found. The

outlier score results are saved as a set of constraints that returns

the corresponding instance set. Outliers are classified as natural

or real using the data interlinking property and comparison

with different datasets. This procedure improves the handling

of natural outliers, lowering the false positive rate.

CONOD [25] is a scalable and generic algorithm for nu-

meric outlier detection for DBpedia. It utilized rdf:type and

Linked Hypernyms Dataset (LHD) [51] for creating cohorts.

Cohorts, unlike clusters, could overlap with each other. For

cohorts, [25] used a scalable clustering approach based on

Locality Sensitive Hashing (LSH) [52]. This approach has

been developed over Apache Spark therefore it can be applied

to very large KGs, however, as the authors used rdf:type and

LHD, this approach is only applicable to DBpedia. Moreover,

this approach has been integrated into the Scalable Semantic

Analytics Stack (SANSA) [60], which is a framework built on

top of Apache Spark. It offers fault-tolerant, highly available,

and scalable methods for efficiently processing RDF data while

supporting semantic technology standards.

DistAD [24] is another generic, scalable, and distributed

framework for anomaly detection on large RDF knowledge

graphs which exploits Apache Spark. DistAD has been de-

signed to handle very large KGs.Additionally, it offers end-

users a range of options to choose from, including vari-

ous algorithms, methods, and hyperparameters, for detecting

outliers on KGs. This approach supports multiple feature

extraction methods such as Literal2Feature [47] and Pivoting,

multiple clustering algorithms such as BiSecting Kmeans [61]

and MinHashLSH5. Moreover, it provides univariant anomaly

detection methods such as IQR, MAD, and Z-Score, and multi-

5https://spark.apache.org/docs/latest/ml-features#minhash-for-jaccard-
distance
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variant Isolation Forest [58]. Moreover, this approach has been

also integrated into the SANSA Stack.
Due to the lack of explainability in previous works, Ex-

PAD [62] has been introduced to bridge this gap. It represents

an improvement over DistAD, as it can generate human-

readable explanations for why a specific numerical result

is considered an outlier. ExPAD utilizes decision trees and

Apache Spark to partition and handles large knowledge graphs,

respectively. By applying an anomaly detection method, such

as IQR, to the partitioned data and identifying anomalies,

ExPAD generates explanations for why a given value of the

target variable may be considered an outlier, by considering

the decision tree branches and their associated variables.
Table II summarizes and compares the existing works and

their main characteristics.

VI. DISCUSSION, CHALLENGES, AND CONCLUSION

Although there is plenty of research in different areas of

anomaly detection, in this paper we focused on providing a

concise overview of existing methodologies and techniques

specifically tailored for identifying anomalies in Knowledge

Graphs involving numeric literals. In the concluding section,

we highlight the challenges encountered in this field and

discuss potential avenues for future research.
a) Comprehensiveness: As [19], [21] introduced, there

are many types of errors that may occur in KGs however, the

existing works tried to address mostly the errors in numerical

literals. Thus one of the working areas could be handling

other types of errors such as temporal anomalies, anomalies on

subject, anomalies on predicate, semantic anomalies, ...
b) Graph-based Approaches: Most of the exciting works

focused on statistical univariant anomaly detection techniques.

However, KGs are heterogeneous complex graphs with labeled

edges (predicates). Therefore, applying graph-based anomaly

detection techniques [25], [63] to KGs could be an interesting

research area.
c) Scalability: The size of the RDF dataset is growing

substantially nowadays. However, most of the exciting works

(except [24], [25], [62]) did not consider this fact and they fail

on large KGs such as DBpedia. So the need of having scalable

anomaly detection methods for large KGs is a necessity.
d) Explainability: Explainability is an important factor

for a robust anomaly detection technique. Having human-

readable explanations for why a given value of a variable in

an observation is an outlier could be beneficial. Unfortunately,

most of the existing works (except [62]) do not offer explain-

ability for the detected anomalies.
e) Lack of Benchmarks: One of the main reasons why

anomaly detection over KGs has not gained adequate attention

is the lack of benchmarks and ground truths. To the best of

our knowledge, there is no publicly available labeled dataset

for anomaly detection in the RDF format. Introducing such a

public benchmark can boost this research field.
f) Streaming: None of the existing methods support data

streaming, which is frequently utilized in industrial scenarios.6

6https://platoon-project.eu

Therefore, having an anomaly detection approach that can

handle RDF data streams would provide significant benefits.
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