
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Applied Soft Computing 12 (2012) 416–422

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho me p age: www.elsev ier .com/ l ocate /asoc

Two layered Genetic Programming for mixed-attribute data classification

Hajira Jabeena,∗, Abdul Rauf Baigb

a Iqra University, 5 H-9\1, Islamabad, Pakistan
b National University of Computer and Emerging Sciences, Islamabad, Pakistan

a r t i c l e i n f o

Article history:
Received 27 November 2009
Received in revised form 26 February 2011
Accepted 14 August 2011
Available online 7 September 2011

Keywords:
Genetic Programming
Classification
Mixed attribute data
Mixed type data classification
Classifier

a b s t r a c t

The important problem of data classification spans numerous real life applications. The classification
problem has been tackled by using Genetic Programming in many successful ways. Most approaches
focus on classification of only one type of data. However, most of the real-world data contain a mixture of
categorical and continuous attributes. In this paper, we present an approach to classify mixed attribute
data using Two Layered Genetic Programming (L2GP). The presented approach does not transform data
into any other type and combines the properties of arithmetic expressions (using numerical data) and
logical expressions (using categorical data). The outer layer contains logical functions and some nodes.
These nodes contain the inner layer and are either logical or arithmetic expressions. Logical expressions
give their Boolean output to the outer tree. The arithmetic expressions give a real value as their output.
Positive real value is considered true and a negative value is considered false. These outputs of inner
layers are used to evaluate the outer layer which determines the classification decision. The proposed
classification technique has been applied on various heterogeneous data classification problems and
found successful.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Data classification is of high interest due to its applicability
in several critical domains like disease diagnosis, feature recogni-
tion, fraud detection and decision making. The real-life-data is very
unpredictable, which makes the classification a challenging task.
This increases the need of automated classification systems with
no or minimum human interference. Some properties of a good
classification system are:

• Robustness: The classifier should be able to output good results
over a variety of problems.

• Applicability: It should be readily applicable to data without any
preprocessing.

• Accuracy: The resultant classifier should be reliable and exhibit
good generalizing abilities.

• Efficient modeling: The structure should be flexible to adapt the
data properties. It should be independent of data distribution.

• Comprehensibility: The classifier should be comprehensible to
help in future decision making.

• Portability: The classifier should be portable to other tools for
future use and efficacy.

∗ Corresponding author. Tel.: +92 321 5708908.
E-mail addresses: hajira@iqraisb.edu.pk (H. Jabeen), rauf.baig@nu.edu.pk

(A.R. Baig).

Fortunately, one of the recent evolutionary algorithms, Genetic
Programming (GP), possesses the above mentioned abilities. This
important feature of GP has been recognized since its inception and
GP has been widely used for the classification tasks. While being
successful in various application domains [1–4], GP suffers from
a few limitations like code bloat, long training time and lack of
convergence, etc. Researchers have been trying to overcome these
limitations to make the most out of this powerful classification tool.

Broadly, GP has been applied for classification in two different
ways. One evolves classifiers as logical rules applicable to cate-
gorical data (continuous attributes need discretization). Another
method is the evolution of arithmetic classifier expressions which
is applicable to numerical attributes (categorical attributes are
encoded into numeric values). The data transformations in either
case can result in loss of information or biasness, in addition to
added computational effort.

We have proposed a novel GP based classification system appli-
cable to mixed attribute data without preprocessing of data. This is
a two layered approach where the outer layer is a logical expres-
sion tree with some leaf nodes. These leaf nodes form the inner
layer trees. The inner layer expressions can be of two types, logical
expressions for categorical attributes and arithmetic expressions
for continuous attributes of the data. The logical expressions give a
Boolean value as output, which can be used by the outer layer, read-
ily. On the other hand, the real output by arithmetic expressions is
considered true for positive values and false for negative values.
These outputs of inner layers are used to evaluate the outer layer

1568-4946/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.asoc.2011.08.029

Author's personal copy

H. Jabeen, A.R. Baig / Applied Soft Computing 12 (2012) 416–422 417

AND

OR

T1 T2

NOT

T3

Fig. 1. Outer logical tree.

which determines the classification decision. This novel GP based
representation has been tested on various binary datasets from UCI
repository [5]. The method has been found compatible with various
other GP based classification algorithms.

2. Related work

GP was introduced by Koza [6] in 1992 for automatic evolu-
tion of computer programs. Its ability to evolve classifiers has been
realized since its beginning. Decision trees are one of the sim-
pler classifiers and GP has been successfully used for decision tree
evolution since 1991 [7]. Several advancements are being made
[8] to date. Other classifier evolution approaches include evolu-
tion of neural networks [9–11], autonomous systems [12], rule
induction algorithms [13], fuzzy rule based systems and fuzzy
petri nets [11,14]. Most of these methods involve defining a gram-
mar that is used to create and evolve classification algorithms
using GP.

GP has been successfully used to evolve classification rules
by various researchers [15–19]. The rule based systems include,
atomic representations proposed by Eggermont [20] and SQL based
representations proposed by Freitas [21]. The evolution of fuzzy
rules, using GP, was introduced by Tunstel [22], Berlanga [23] and
Mendes [24]. Chien [25] used fuzzy discrimination function for clas-
sification. Falco [26] discovered comprehensible classification rules
that use continuous value attributes. Bojarczuk [27,28] used con-
strained syntax GP to represent classification rules in disjunctive
normal form. Tsakonas [29] introduced two GP based classification
systems in the medical domain and achieved noticeable perfor-
mance. Lin [30] proposed a layered GP where different layers
correspond to different populations performing the task of feature
extraction and classification.

A relatively new and GP specific approach to classification
is evolution of arithmetic expressions for classification. Arith-
metic expressions use (real or integer value) attributes of data
as variables in the expressions. The arithmetic expressions give
a real value as output which determines classification decision.
For binary classification problems, the boundary of positive and
negative numbers is usually used. For multi-class classification
problems, static threshold [31,32], dynamic threshold [32,33] and
slotted threshold [34] application methods have been proposed.
Another method for multi-class classification is binary decompo-
sition or one versus all method. In this method, N classifiers are
evolved for N class classification problem. Where, each classifier
is trained to recognize samples belonging to one class and reject
samples belonging to other classes. Binary decomposition method
has been explored by various researchers [35–39]. Lichodzijewski
[40] proposed a cooperative bid based mechanism for multiclass
classification.

Very few researchers have focused on classifying multiple types
of data. Eggermont [21] presented comprehensible atomic rep-
resentations for mixed data classification. Loveard [41] proposed
different strategies to use nominal attributes for classification; his

proposed methods include execution branching and numeric con-
versions. Ong [42] used the discretization of continuous attributes
present in data for credit approval. Most of the above mentioned
methods involve data conversions requiring a preprocessing step.
This step increases the complexity and can be a possible source of
biasness and loss of information.

The logical rule based classifiers, and arithmetic expression
based classifiers, have shown promising results. However, both
methods are applicable to homogeneous data, the expression-
based method is applicable to numerical data, and logical
representation is suitable for categorical data. Mixed data must
be preprocessed to be used by any method. Next section
presents the proposed technique that uses the combination
of logical and arithmetic expressions for mixed-type data
classification.

3. Methodology

The first step in any GP system is defining the solution repre-
sentation, by selecting a function and a terminal set. The proposed
solution (classifier) is a two-layered tree. The outer layer is a logical
tree with function and terminal nodes (antecedents). The function
set contains ‘and’, ‘or’ and ‘not’ operators. The terminal nodes of the
outer layer tree are the inner layer trees. One instance of the outer
layer logical tree (Fig. 1) is:

Outer Logical Tree = [(Inner tree1) OR (Inner tree2)]

AND NOT (Inner tree3) (1)

There are two types of inner trees in our approach:

(1) Logical inner tree
(2) Arithmetic inner tree

A logical inner tree uses logical functions like ‘and’, ‘or’ and ‘not’
and categorical attributes of data. The node in this tree is ‘categori-
cal attribute = any value’ or ‘categorical attribute /= any value’. The
output of a logical tree is a Boolean value for each data instance. An
example of a logical inner tree (Fig. 2b) is:

Logical Inner Tree = [(C1 = ‘a’) AND (C2 = ‘b’)] OR

[(C4 /= ‘c’) OR (C1 = ‘d’)] (2)

The arithmetic inner tree combines the numerical attributes
of the data by arithmetic functions. The function set used in this
representation is:

Function set = {+, −, ∗, /}
The terminals in this representation are the numerical attribute

names which are replaced by values of an instance for evaluation.
The output of an arithmetic tree is a real value. One of the possible
representations of an arithmetic inner tree (Fig 2a) is:

Arithmetic Inner Tree = (A1/A2) + (A2 ∗ A3) (3)

Several arithmetic and logical trees provide their output as input
(nodes) to outer logical tree. The output of a logical inner tree can
be directly used by the outer logical tree. On the other hand, the
real output of arithmetic inner tree is considered true for positive
values and false for negative values.

The number of arithmetic and logical inner trees in an outer
tree is determined by arithmetic and logical probability which is
the ratio of arithmetic attributes in the data or consequently logical
attributes of data.

Arithmetic Inner Tree probability = number of numerical attributes
total number of attributes

(4)

Author's personal copy

418 H. Jabeen, A.R. Baig / Applied Soft Computing 12 (2012) 416–422

Arithmetic Inner Layer Logical Inner Layer

+

/

A1 A2

*

A2 A3

OR

AND

C1='a' C2='b'

OR

C4≠'c ' C1='d'

Fig. 2. Inner layers.

Data:[A1 A 2 A 3 A 4 C 1 C 2 C 3 C 4],A 1..A4=numerical attributes,C 1..C 4=categorical Attributes
Instance: [1 2 3 -2 a b c d] Є class 1
Arithmetic Inner Tree Probability : 4/8=0.5
Logical Inner Tree Probability : 4/8=0.5
Inner Tree 1= logical Inner Tree=[(C1=’a’)AND(C2=’b’)]OR[(C4 ’c’)OR(C 1=’d’)] => True
Inner Tree 2= Arithmetic Inner Tree = (A1/A2) + (A2*A3)=> ½+2*3 => 6.5 => True
Inner Tree 3= Arithmetic Inner Tree = A1+A4 => 1-2 => -1 => False
Outer Logical Tree = [(Inner tree1) OR (Inner tree2)] AND NOT (Inner tree3) => True

Fig. 3. An example of layered classification.

Logical Inner Tree probability = number of categorical attributes
total number of attributes

(5)

The total number of attributes is the sum of categorical and
numerical attributes:

Logical Inner Tree probability = 1 − Arithmetic Inner Tree probability (6)

The next step of proposed algorithm is initialization of two lay-
ered GP classifier trees or expressions. We have used ramped half
and half initialization method [6] which allows diverse and flexible
population initialization and has been found successful for a variety
of classification problems. The maximum depth limit for the outer
layer has been set between 2 and 4. The inner layers trees are also
created using ramped half and half method with depth limits 2–4.

This implies that the maximum depth of any tree is limited to
eight. The algorithm for creation of layered trees for classification
is explained in Algorithm 1.

Algorithm 1. Layered Tree Initialization
Step 1. Begin

Step 2. For population size

a. Initialize outer layer tree using ramped half

and half method.

b. For each node in outer tree

i. If (arithmetic probability is met)

1. Create arithmetic inner tree using ramped

half and half method.

ii. Else

1. Create logical inner tree using ramped

half and half method.

c. End for

Step 3. End for

Step 4. End

Fig. 3 elaborates an example of the proposed layered classifi-
cation decision for one data instance. Such evaluations are carried
out for each instance in the training data to estimate the fitness of
a classifier.

We have used three operators for the evolutionary process,
which are, reproduction, mutation and crossover. The reproduc-
tion operator simply transfers an individual to the next generation.
The individual member is chosen to use fitness proportionate

Parent 1 Parent 2

2dlihC1dlihC

AND

OR

T1 T2

NOT

T3

OR

AND

T4 T5

AND

T6 T7

AND

AND

T6 T7

NOT

T3

OR

AND

T4 T5

OR

T1 T2

Fig. 4. Crossover operator.

Author's personal copy

H. Jabeen, A.R. Baig / Applied Soft Computing 12 (2012) 416–422 419

selection. The individual for mutation is chosen randomly. The
mutation operator randomly selects an inner subtree with 50%
probability. If the root of subtree is a logical node, the subtree is
replaced with a logical expression. On the other hand, if the root of
the subtree is an arithmetic node, the subtree is replaced with a ran-
domly generated arithmetic subtree. If the selected node belongs to
the outer tree, a random outer layered subtree is generated which
replaces the selected subtree.

For crossover, a random node is selected from the outer tree
of both parents and swapped. The only restriction placed on both
‘outer layer’ subtrees is that they should have the same depth.
This restriction has been adopted from the author’s previous work
named DepthLimited Crossover [43] where subtrees of the same
depth are swapped to prevent the increase in classifier size dur-
ing evolution. The process is illustrated in Fig. 4 where T1–T7 are
the inner trees which may have varying depths. The depth of outer
subtrees must be same for the crossover.

We have investigated two different fitness functions in our
approach. One is the classification accuracy for the classifier and,
the other is the area under the convex hull. The researchers sug-
gest that, in case of skewed data (the number of instances belonging
to one class are larger in number as compared to other one), high
accuracy may not represent good discrimination ability of a clas-
sifier [44]. On the other hand, a classifier with higher area under
the convex hull AUC has better discrimination ability. Both fitness
functions are described in Algorithms 2 and 3.
Algorithm 2. Fitness ACC
Step 1: Begin

Step 2: For each data instance

a. Evaluate logical antecedents using attributes

values of given Instance (Inner Layer)

b. Evaluate arithmetic antecedents using attributes

values of given Instance (Inner Layer)

c. Evaluate the outer expression by substituting

antecedent values

d. If expression == true and data instance ∈ class 1

e. Increment CorrectCount

f. If expression = false and data instance /∈ class 1

g. Increment CorrectCount

Step 3: End for

Step 4: Fitness = CorrectCount/number of data instances

Step 5: End

In an evolutionary algorithm, the fitness of every population
member is evaluated in search of a better solution. In our case,
every member is a classifier. All the training instances are used to
calculate fitness (ACC or AUC) of each classifier.
Algorithm 3. Fitness AUC
Step 1: Begin

Step 2: For each data instance

a. Evaluate logical antecedents using attributes

values of given Instance (Inner Layer)

b. Evaluate arithmetic antecedents using attributes

values of given Instance (Inner Layer)

c. Evaluate the outer expression by substituting

antecedent values

d. Count TruePositive, TrueNegative, FalsePositive

and FalseNegative

Step 3: End for

Step 4:
Fitness = 0.5 * [(TruePositive/(TruePositive + FalseNegative)) +

(TrueNegative/(TrueNegative + FalsePositive))]

Step 5: End

The algorithm is continued for a certain number of generations
in search of better classifiers and terminated if a better solution
has been found or given number of generations have elapsed. The
overall classification algorithm is illustrated in Fig. 5.

4. Results

We have used ten-fold-cross-validation method to obtain the
classification results. The data is divided into ten equal parts, nine

Fig. 5. Algorithm L2GP.

Table 1
GP parameters.

Parameter Value

Initialization method Ramped half and half(depth 2–)
Outer logical layer function set AND, OR, NOT
Arithmetic inner layer function set +, *, −, / (protected division)
Inner logical layer function set AND, OR, NOT
Inner tree maximum depth 4
Outer tree maximum depth 4
Population size ‘N’ 600
Termination criteria User defined generations(250) or 100%

training accuracy
Arithmetic tree terminals Numerical attributes, Constants[0,10]
Logical tree terminals Categorical attribute values
Mutation probability 0.25
Reproduction probability 0.25
Crossover probability 0.5
Mutation criteria Random
Crossover selection Tournament Selection with size 7
Reproduction criteria Fitness proportionate selection

parts are used for training and one part is used for testing phase, this
process is repeated to keep each of the ten parts as testing data once.
The ten-fold-cross-validation process is repeated 5 times. For each
new fold, we have performed two independent runs with different
random seeds. This means that, for each dataset, there are total 100
runs. All the reported results have been averaged for testing data
for these 100 runs [35,45]. Table 1 lists the parameters used in the
layered GP system.

The datasets used in the empirical analysis have been taken from
the UCI ML repository [5]. The properties of data sets are mentioned
in Table 2. In this paper, our investigation is restricted to binary
classification problems only.

Different performance measures have been used, to analyze the
proposed approach. These measures are [44]:

4.1. Accuracy

Accuracy is the prediction rate of a classifier and shows the
percentage of the number of instances correctly classified.

Accuracy = tp + tn

tp + tn + fp + fn
(7)

where tp = true positives, tn = true negatives, fp = false positives and
fn = false negatives.

Author's personal copy

420 H. Jabeen, A.R. Baig / Applied Soft Computing 12 (2012) 416–422

Table 2
Datasets properties.

Dataset Instances Attributes Distribution

Japanese credit (CRD) 690 15, 6(continuous), 9(categorical) 44.5, 55.5
Australian credit (AUS) 690 14, 6(numerical), 8 (categorical) 44.5, 55.5
German credit (GER) 1000 20, 7(numerical), 13 categorical 30, 70
Heart disease (HRT) 270 13, 6(real), 7(binary, nominal, ordered) 44.4, 55.6
Hepititus (HEP) 155 20, 5(numerical), 15(categorical) 20.6, 79.4

Table 3
Average results (test) achieved using accuracy as fitness function.

Data sets tp tn fp fn Accuracy Sensitivity Specificity Auc Auc(acc)

AUS 30.7 30.9 3.0 3.2 90.79 0.90 0.91 0.90 1.00
GER 07.0 72.0 0.0 21 79.00 0.25 1.00 0.62 0.79
HRT 10.5 11.0 2.0 2.9 82.67 0.76 0.84 0.80 0.99
CRD 28.2 28.6 4.3 4.7 86.26 0.85 0.86 0.86 1.00
HEP 06.7 05.4 2.2 0.7 81.00 0.91 0.71 0.80 0.99

Table 4
Average results (test) achieved using AUC as fitness function.

Data sets tp tn fp fn Accuracy Sensitivity Specificity Auc Auc(acc)

AUS 32.0 28.0 2.0 5.0 90.0 0.86 0.93 0.90 1.00
GER 15.0 75.0 4.0 6.0 89.8 0.71 0.94 0.83 0.92
HRT 10.5 11.0 2.0 2.0 81.2 0.80 0.80 0.80 0.99
CRD 28.3 29.2 3.7 4.6 87.3 0.86 0.89 0.87 1.00
HEP 10.0 03.0 0.8 2.0 82.2 0.83 0.78 0.81 0.98

4.2. Sensitivity

The sensitivity is the probability that a positive test, results in
positive. High sensitivity means a large number of positive results
are correctly detected. It is also known as TPR.

Sensitivity = tp

tp + fn
(8)

4.3. Specificity

It measures the proportion of negatives identified as negatives
correctly.

Specificity = tn

tn + fp
(9)

4.4. Area under the convex hull

Area under the convex hull (AUC) has been defined as a measure
that correctly evaluates the discriminating power of a classifier and
acts as a better measure for classifier efficiency than the traditional
classification accuracy, especially for imbalanced data sets.

Area under the convex hull (AUC) =
(

1
2

tp

tp + fn
+ tn

tn + fp

)
(10)

4.5. Area under the convex hull combined with accuracy

This is a new, finer measure that makes use of some other meth-
ods in evaluating performance. It is correlated with the root mean
square error.

AUC (ACC) = sensitivity+specificity
2 ∗ Accuracy

(11)

Tables 3 and 4 present the classification results for the five data
sets using two fitness measures ACC and AUC. The accuracy in both
cases is comparable except for GER and HEP data. The reason is

imbalanced class distribution in these datasets. Here, accuracy does
not represent better discrimination power of a classifier therefore,
it results in less value of AUC. In Table 4, we can see that better
value of AUC has also resulted in better accuracy, but vice versa is
not true for imbalanced datasets. Hence, the cases where the data is
nearly balanced, there is no-noticeable difference in ACC and AUC
of classifiers. As mentioned earlier, the reported results are average
of best individuals obtained in 100 executions for each dataset after
250 generations.

Table 5 presents an example of two layered rule for German
credit data set, which contains 7 numerical and 13 categorical
attributes. In this rule, there are two leaf nodes in the outer layer,
one is an arithmetic expression and the other is a logical expression.

Table 6 shows the average accuracy and respective standard
deviations during training and testing phase for all datasets. These
results are reported after every 20 generations, shown in the first
row of the table. The result for testing is generated by extracting the
best classifier after given generations and testing its performance
on test data.

Fig. 6 presents the behavior of average best population members
during the evolution. We can note increase in average accuracy of
trees for all datasets during evolution. This increase reaches a stable
state around 200 iterations.

We have also compared the average results of best evolved
classifiers with other GP based classification approaches. It can be
observed that the presented approach yields compatible results
with respect to accuracy. In Table 7, some techniques [41,46]
involve preprocessing while others [26,47] use constrained syntax
GP, to incorporate mixed-type data.

This can be noted that the L2GP approach has produced com-
patible results when compared to other GP based techniques while

Table 5
Two layered rule for German credit data.

Outer Layer (NOT (T1))OR (T2) (outer layer)
T1 A15 = “A151” Logical Inner Tree
T2 (((A18/A8)/A2) + (A5 * (A18 − A16)) * A13) Arithmetic Inner Tree

Author's personal copy

H. Jabeen, A.R. Baig / Applied Soft Computing 12 (2012) 416–422 421

Table 6
Average accuracy of population for training and testing data.

Generations 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00 220.00 240.00

AUS

Train% 80.97 82.35 83.73 83.92 84.83 85.39 86.39 87.67 89.65 91.91 92.37 93.84
Stdev 00.16 00.27 00.33 00.42 00.54 00.59 00.67 00.67 00.74 00.76 00.74 00.71
Test% 81.43 82.70 83.08 83.40 84.03 84.41 85.32 86.17 88.20 88.65 89.62 90.00
Stdev 00.21 00.21 00.10 00.42 00.31 00.10 00.10 00.00 00.31 00.31 00.21 00.10

GER

Train% 56.31 59.60 61.28 63.37 64.79 67.00 71.00 81.00 85.00 86.00 89.00 90.00
Stdev 00.01 00.28 00.21 00.17 00.26 00.31 00.31 00.31 00.40 00.38 00.47 00.42
Test% 58.02 60.98 63.02 65.29 66.45 67.32 69.34 74.59 83.89 88.25 88.81 89.89
Stdev 00.00 00.43 01.71 01.93 01.21 01.00 01.50 01.86 01.86 01.64 01.28 01.21

HRT

Train% 68.10 71.47 73.25 75.72 76.92 78.13 80.53 81.97 83.89 84.62 86.06 89.42
Stdev 00.05 00.28 00.55 00.54 00.38 00.34 00.41 00.54 00.62 00.61 00.58 00.58
Test% 69.84 71.35 72.29 73.62 73.89 75.22 76.02 77.21 77.88 78.28 79.60 81.20
Stdev 00.41 00.41 00.60 00.73 00.81 00.53 00.20 00.09 00.10 00.37 00.98 01.39

CRD

Train% 80.87 83.62 84.75 85.32 86.36 87.41 87.88 88.35 89.83 91.64 91.92 91.92
Stdev 00.02 00.12 00.07 00.09 00.05 00.02 00.02 00.02 00.09 00.07 00.12 00.09
Test% 82.39 83.40 83.70 84.18 84.67 85.15 85.25 85.78 86.71 87.27 87.27 87.28
Stdev 00.21 00.43 02.79 03.22 01.50 00.86 00.64 00.85 00.43 00.22 00.22 00.86

HEP

Train% 55.36 60.42 69.35 72.32 81.25 85.71 86.61 95.54 98.00 98.30 98.30 99.40
Stdev 00.15 00.22 00.25 00.25 00.2 00.12 00.07 03.05 02.00 01.70 01.70 00.60
Test% 57.29 61.89 65.36 68.14 73.35 73.87 76.47 81.68 82.20 82.20 82.20 82.20
Stdev 01.01 01.01 01.01 00.76 00.51 00.76 01.01 01.52 02.53 03.54 04.55 05.05

50

60

70

80

90

100

2502302101901701501301109070503010

A
cc
ur
ac
y

Genera�ons

AUS

GER

HRT

CRD

HEP

Fig. 6. Evolution of best trees during training.

Table 7
Comparison of classification results with other techniques.

Data set L2GP (average accuracy of best classifiers %) Others (accuracy %)

AUS 90

86.3 [21],
85.1 [26],
86 [41],
88.1 [46],
88.3 [42],
90 [47],
88 [48],
83.4 [49]

GER 89.8

72.9 [21],
77.4 [42],
78 [47],
76 [48]

HRT 81.2
77.9 [13],
78.7 [21],
82.2 [24],

CRD 87.3
84.8 [13],
84.7 [24]

enjoying the benefit of discarding the need of any manipulation on
data.

5. Conclusions and future work

In this paper, we have proposed a novel GP based classification
technique that operates upon data with mixed type of attributes.
The technique does not require any transformation or preprocess-
ing of the data. We have tested the system on several benchmark
datasets and compared the performance with various GP based
classification methods. The results have revealed that the presented
technique offers compatible performance owing to its flexible two
layered representation. The future works include application of this
technique for multi-class classification problems.

Acknowledgement

The authors would like to thank Higher Education Commission,
Pakistan for the financial support and providing the opportunity to
perform this research.

References

[1] H.S. Lopes, Genetic programming for epileptic pattern recognition in electroen-
cephalographic signals, Applied Soft Computing (2007) 343–352.

Author's personal copy

422 H. Jabeen, A.R. Baig / Applied Soft Computing 12 (2012) 416–422

[2] A. Song, M.I. Heywood, Training genetic programming on half a million pat-
terns: an example from anomaly detection, IEEE Transactions on Evolutionary
Computation 9 (3) (2005) 225–239.

[3] G. Potgieter, A.P. Engelbrecht, Evolving model trees for mining data sets with
continuous-valued classes, Expert Systems with Applications 35 (4) (2008)
1513–1532.

[4] T.E. McKee, T. Lensberg, Genetic programming and rough sets: a hybrid
approach to bankruptcy classification, European Journal of Operational
Research 138 (2) (2002) 436–451.

[5] A. Asuncion, D.J. Newman, Machine Learning Repository (2007),
http://archive.ics.uci.edu/ml/.

[6] J.R. Koza, Genetic Programming: On the Programming of computers by Means
of Natural Selection, MIT Press, MA, Cambridge, 1992.

[7] J.R. Koza, Concept Formation and Decision Tree Induction Using the Genetic
Programming Paradigm. Lecture Notes in Computer Science, vol. 496, Springer-
Verlag, 1991, pp. 124–128.

[8] Q. Li, et al., Dynamic split-point selection method for decision tree evolved by
gene expression programming, in: IEEE Congress on Evolutionary Computation,
IEEE Press, 2009.

[9] D. Rivero, J.R. Rabunal, A. Pazos, Modifying Genetic Programming for Artifi-
cial Neural Network Development for Data Mining. Soft Computing, vol. 13,
Springer-Verlag, 2008, pp. 291–305.

[10] M.D. Ritchie, et al., Genetic programming neural networks: a powerful bioin-
formatics tool for human genetics, Applied Soft Computing (2007) 471–479.

[11] A. Tsakonas, A comparison of classification accuracy of four genetic
programming-evolved intelligent structures, Information Sciences (2006)
691–724.

[12] M. Oltean, L. Diosan, An Autonomous GP-Based System for Regression and Clas-
sification Problems. Applied Soft Computing, vol. 9, Elsevier, 2009, pp. 49–60.

[13] G.A. Pappa, A.A. Freitas, Evolving rule induction algorithms with multiobjective
grammer based genetic programming, Knowledge and Information Systems
(2008).

[14] J. Eggermont, Evolving fuzzy decision trees for data classification, Proceedings
of the 14th Belgium Netherlands Artificial Intelligence Conference (2002).

[15] R. Konig, U. Johansson, L. Niklasson, Genetic programming – a tool for flexible
rule extraction, IEEE Congress on Evolutionary Computation (2007).

[16] A.P. Engelbrecht, L. Schoeman, S. Rouwhorst, A building block approach to
genetic programming for rule discovery, in data mining: a heuristic approach,
in: H.A. Abbass, R. Sarkar, C. Newton (Eds.), Data Mining, Idea Group Publishing,
2001, pp. 175–189.

[17] E. Carreno, G. Leguizamon, N. Wagner, Evolution of classification rules for com-
prehensible knowledge discovery, IEEE Congress on Evolutionary Computation
(2007) 1261–1268.

[18] A.A. Freitas, A genetic programming framework for two data mining tasks:
classification and generalized rule induction, in: Genetic Programming, Morgan
Kaufmann, CA, USA, 1997, pp. 96–101.

[19] C.S. Kuo, T.P. Hong, C.L. Chen, Applying Genetic Programming Technique in Clas-
sification Trees. Soft Computing, vol. 11, Springer-Verlag, 2007, pp. 1165–1172.

[20] J. Eggermont, A.E. Eiben, J.I. Hemert, A comparison of genetic programming vari-
ants for data classification, Proceedings of the Eleventh Belgium Netherlands
Conference on Artificial Intelligence (1999) 253–254.

[21] J. Eggermont, J.N. Kok, W.A. Kosters, GP for data classification partitioning
the search space, Proceedings of the 2004 Symposium on Applied Computing
(2004) 1001–1005.

[22] E. Tunstel, M. Jamshidi, On genetic programming of fuzzy rule-based systems
for intelligent control, International Journal of Intelligent Automation and Soft
Computing (1996) 273–284.

[23] F.J. Berlanga, et al., A genetic-programming-based approach for the learning
of compact fuzzy rule-based classification systems, Lecture Notes on Artificial
Intelligence (LNAI) (2006) 182–191.

[24] R.R.F. Mendes, et al., Discovering Fuzzy Classification Rules with Genetic Pro-
gramming and Co-Evolution. Lecture Notes in Artificial Intelligence, Springer,
2001, pp. 314–325.

[25] B.C. Chien, J.Y. Lin, T.P. Hong, Learning Discriminant Functions with Fuzzy
Attributes for Classification Using Genetic Programming. Expert Systems with
Applications, vol. 231, Elsevier, 2002, pp. 31–37.

[26] I.D. Falco, A.D. Cioppa, E. Tarantino, Discovering interesting classification rules
with GP, Applied Soft Computing (2002) 257–269.

[27] C.C. Bojarczuk, et al., A constrained-syntax genetic programming system for
discovering classification rules: application to medical data sets, Artificial Intel-
ligence in Medicine (2004) 27–48.

[28] C.C. Bojarczuk, H.S. Lopes, A.A. Freitas, An Innovative Application of a
Constrained-Syntax Genetic Programming System to the Problem of Predicting
Survival of Patients. Lecture Notes in Computer Science, vol. 2610, Springer-
Verlag, 2003.

[29] A. Tsakonas, et al., Evolving rule-based systems in two medical domains using
genetic programming, Artificial Intelligence in Medicine (2004) 195–216.

[30] J.Y. Lin, et al., Classifier design with feature selection and feature extraction
using layered genetic programming, Expert Systems with Applications 34
(2007) 1384–1393.

[31] M. Zhang, V. Ciesielski, Genetic programming for multiple class object detection
Australia, in: Proceedings of the 12th Australian Joint Conference on Artificial
Intelligence, 1999, pp. 180–192.

[32] D. Parrott, X. Li, V. Ciesielski, Multi-objective techniques in genetic program-
ming for evolving classifiers, IEEE Congress on Evolutionary Computation
(2005) 183–190.

[33] W.R. Smart, M. Zhang, Classification strategies for image classification in
genetic programming, Proceeding of Image and Vision Computing NZ Inter-
national Conference (2003) 402–407.

[34] M. Zhang, W. Smart, Multiclass object classification using genetic pro-
gramming, Lecture Notes in Computer Science (2004) 367–376.

[35] J.K. Kishore, et al., Application of genetic programming for multicategory pat-
tern classification, IEEE Transactions on Evolutionary Computation (2000).

[36] T. Loveard, V. Ciesielski, Representing classification problems in genetic
programming, IEEE Congress on Evolutionary Computation (2001)
1070–1077.

[37] W. Smart, M. Zhang, Using genetic programming for multiclass classification
by simultaneously solving component binary classification problems, Lecture
Notes in Computer Science (2005).

[38] A. Teredesai, V. Govindaraju, in evolving GP based classifiers for a pattern recog-
nition task, IEEE Congress on Evolutionary Computation (2004) 509–515.

[39] C.C. Bojarczuk, H.S. Lopes, A.A. Freitas, Genetic programming for knowledge
discovery in chest-pain diagnosis, IEEE Engineering in Medicine and Biology
Magazine (2000) 38–44.

[40] P. Lichodzijewski, M.I. Heywood, Pareto-co evolutionary genetic programming
for problem decomposition in multi-class classification, in: Proceedings of the
9th Annual Conference on Genetic and Evolutionary Computation, London,
2007.

[41] T. Loveard, V. Ciesielski, Employing nominal attributes in classification using
genetic programming, in: 4th Asia Pacific Conference on Simulated Evolution
and Learning, Singapore, 2002, pp. 487–491.

[42] C.S. Ong, J.J. Huang, G.H. Tzeng, Building credit scoring models using genetic
programming, Expert Systems with Applications 29 (1) (2005) 41–47.

[43] H. Jabeen, A.R. Baig, Depth Limited Crossover in Genetic Programming for Clas-
sifier Evolution, Computers in Human Behaviour 27 (5) (2011) 1475–1481.

[44] M. Sokolova, G. Lapalme, Performance Measures in Classification of Human
Communications. Lecture Notes in Artificial Intelligence, vol. 4509, Springer-
Verlag, 2007, pp. 150–170.

[45] D.P. Muni, N.R. Pal, J. Das, A novel approach to design classifiers using GP, IEEE
Transactions of Evolutionary Computation (2004).

[46] K. Badran, P. Rockett, Integrating categorical variables with multiobjective
genetic programming for classifier construction, in: European Conference on
Genetic Programming, LNCS, Springer-Verlag, 2008.

[47] J.J. Huang, C.S. Ong, G.H. Tzeng, Two-stage Genetic Programming (2SGP) for
the credit scoring model Applied Mathematics and Computation, vol. 174(2),
Elsevier, 2006, pp. 1039–1053.

[48] Y. Zhang, P. Rockett, A Comparison of Three Evolutionary Strategies for
Multiobjective Genetic Programming. Artificial Intelligence Review, vol. 27,
Springer-Verlag, 2007, pp. 149–163.

[49] S. Sakprasat, M.C. Sinclair, Classification rule mining for automatic credit
approval using genetic programming, in: IEEE Congress on Evolutionary Com-
putation, IEEE Press, Singapore, 2007, pp. 548–555.

