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a  b  s  t  r  a  c  t

The  important  problem  of  data  classification  spans  numerous  real  life  applications.  The  classification
problem  has  been  tackled  by  using  Genetic  Programming  in  many  successful  ways.  Most  approaches
focus  on  classification  of  only  one  type  of  data.  However,  most  of the  real-world  data  contain  a  mixture  of
categorical  and  continuous  attributes.  In this  paper,  we  present  an  approach  to  classify  mixed  attribute
data  using  Two  Layered  Genetic  Programming  (L2GP).  The  presented  approach  does  not  transform  data
into any  other  type  and  combines  the  properties  of  arithmetic  expressions  (using  numerical  data)  and
logical expressions  (using  categorical  data).  The  outer  layer  contains  logical  functions  and  some  nodes.
These  nodes  contain  the  inner  layer  and  are  either  logical  or arithmetic  expressions.  Logical  expressions
give  their  Boolean  output  to the  outer  tree.  The  arithmetic  expressions  give  a real  value  as  their  output.
Positive  real  value  is  considered  true  and a negative  value  is  considered  false.  These  outputs  of inner
layers  are  used  to evaluate  the  outer  layer  which  determines  the  classification  decision.  The proposed
classification  technique  has  been  applied  on various  heterogeneous  data  classification  problems  and
found  successful.

© 2011  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Data classification is of high interest due to its applicability
in several critical domains like disease diagnosis, feature recogni-
tion, fraud detection and decision making. The real-life-data is very
unpredictable, which makes the classification a challenging task.
This increases the need of automated classification systems with
no or minimum human interference. Some properties of a good
classification system are:

• Robustness: The classifier should be able to output good results
over a variety of problems.

• Applicability: It should be readily applicable to data without any
preprocessing.

• Accuracy: The resultant classifier should be reliable and exhibit
good generalizing abilities.

• Efficient modeling: The structure should be flexible to adapt the
data properties. It should be independent of data distribution.

• Comprehensibility: The classifier should be comprehensible to
help in future decision making.

• Portability: The classifier should be portable to other tools for
future use and efficacy.

∗ Corresponding author. Tel.: +92 321 5708908.
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(A.R. Baig).

Fortunately, one of the recent evolutionary algorithms, Genetic
Programming (GP), possesses the above mentioned abilities. This
important feature of GP has been recognized since its inception and
GP has been widely used for the classification tasks. While being
successful in various application domains [1–4], GP suffers from
a few limitations like code bloat, long training time and lack of
convergence, etc. Researchers have been trying to overcome these
limitations to make the most out of this powerful classification tool.

Broadly, GP has been applied for classification in two different
ways. One evolves classifiers as logical rules applicable to cate-
gorical data (continuous attributes need discretization). Another
method is the evolution of arithmetic classifier expressions which
is applicable to numerical attributes (categorical attributes are
encoded into numeric values). The data transformations in either
case can result in loss of information or biasness, in addition to
added computational effort.

We have proposed a novel GP based classification system appli-
cable to mixed attribute data without preprocessing of data. This is
a two  layered approach where the outer layer is a logical expres-
sion tree with some leaf nodes. These leaf nodes form the inner
layer trees. The inner layer expressions can be of two  types, logical
expressions for categorical attributes and arithmetic expressions
for continuous attributes of the data. The logical expressions give a
Boolean value as output, which can be used by the outer layer, read-
ily. On the other hand, the real output by arithmetic expressions is
considered true for positive values and false for negative values.
These outputs of inner layers are used to evaluate the outer layer

1568-4946/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
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Fig. 1. Outer logical tree.

which determines the classification decision. This novel GP based
representation has been tested on various binary datasets from UCI
repository [5].  The method has been found compatible with various
other GP based classification algorithms.

2. Related work

GP was introduced by Koza [6] in 1992 for automatic evolu-
tion of computer programs. Its ability to evolve classifiers has been
realized since its beginning. Decision trees are one of the sim-
pler classifiers and GP has been successfully used for decision tree
evolution since 1991 [7]. Several advancements are being made
[8] to date. Other classifier evolution approaches include evolu-
tion of neural networks [9–11], autonomous systems [12], rule
induction algorithms [13], fuzzy rule based systems and fuzzy
petri nets [11,14]. Most of these methods involve defining a gram-
mar  that is used to create and evolve classification algorithms
using GP.

GP has been successfully used to evolve classification rules
by various researchers [15–19].  The rule based systems include,
atomic representations proposed by Eggermont [20] and SQL based
representations proposed by Freitas [21]. The evolution of fuzzy
rules, using GP, was introduced by Tunstel [22], Berlanga [23] and
Mendes [24]. Chien [25] used fuzzy discrimination function for clas-
sification. Falco [26] discovered comprehensible classification rules
that use continuous value attributes. Bojarczuk [27,28] used con-
strained syntax GP to represent classification rules in disjunctive
normal form. Tsakonas [29] introduced two GP based classification
systems in the medical domain and achieved noticeable perfor-
mance. Lin [30] proposed a layered GP where different layers
correspond to different populations performing the task of feature
extraction and classification.

A relatively new and GP specific approach to classification
is evolution of arithmetic expressions for classification. Arith-
metic expressions use (real or integer value) attributes of data
as variables in the expressions. The arithmetic expressions give
a real value as output which determines classification decision.
For binary classification problems, the boundary of positive and
negative numbers is usually used. For multi-class classification
problems, static threshold [31,32],  dynamic threshold [32,33] and
slotted threshold [34] application methods have been proposed.
Another method for multi-class classification is binary decompo-
sition or one versus all method. In this method, N classifiers are
evolved for N class classification problem. Where, each classifier
is trained to recognize samples belonging to one class and reject
samples belonging to other classes. Binary decomposition method
has been explored by various researchers [35–39].  Lichodzijewski
[40] proposed a cooperative bid based mechanism for multiclass
classification.

Very few researchers have focused on classifying multiple types
of data. Eggermont [21] presented comprehensible atomic rep-
resentations for mixed data classification. Loveard [41] proposed
different strategies to use nominal attributes for classification; his

proposed methods include execution branching and numeric con-
versions. Ong [42] used the discretization of continuous attributes
present in data for credit approval. Most of the above mentioned
methods involve data conversions requiring a preprocessing step.
This step increases the complexity and can be a possible source of
biasness and loss of information.

The logical rule based classifiers, and arithmetic expression
based classifiers, have shown promising results. However, both
methods are applicable to homogeneous data, the expression-
based method is applicable to numerical data, and logical
representation is suitable for categorical data. Mixed data must
be preprocessed to be used by any method. Next section
presents the proposed technique that uses the combination
of logical and arithmetic expressions for mixed-type data
classification.

3. Methodology

The first step in any GP system is defining the solution repre-
sentation, by selecting a function and a terminal set. The proposed
solution (classifier) is a two-layered tree. The outer layer is a logical
tree with function and terminal nodes (antecedents). The function
set contains ‘and’, ‘or’  and ‘not’ operators. The terminal nodes of the
outer layer tree are the inner layer trees. One instance of the outer
layer logical tree (Fig. 1) is:

Outer Logical Tree = [(Inner tree1) OR (Inner tree2)]

AND NOT (Inner tree3) (1)

There are two types of inner trees in our approach:

(1) Logical inner tree
(2) Arithmetic inner tree

A logical inner tree uses logical functions like ‘and’, ‘or’  and ‘not’
and categorical attributes of data. The node in this tree is ‘categori-
cal attribute = any value’ or ‘categorical attribute /= any value’. The
output of a logical tree is a Boolean value for each data instance. An
example of a logical inner tree (Fig. 2b) is:

Logical Inner Tree = [(C1 = ‘a’) AND (C2 = ‘b’)] OR

[(C4 /= ‘c’) OR (C1 = ‘d’)] (2)

The arithmetic inner tree combines the numerical attributes
of the data by arithmetic functions. The function set used in this
representation is:

Function set = {+,  −, ∗, /}
The terminals in this representation are the numerical attribute

names which are replaced by values of an instance for evaluation.
The output of an arithmetic tree is a real value. One of the possible
representations of an arithmetic inner tree (Fig 2a) is:

Arithmetic Inner Tree = (A1/A2) + (A2 ∗ A3) (3)

Several arithmetic and logical trees provide their output as input
(nodes) to outer logical tree. The output of a logical inner tree can
be directly used by the outer logical tree. On  the other hand, the
real output of arithmetic inner tree is considered true for positive
values and false for negative values.

The number of arithmetic and logical inner trees in an outer
tree is determined by arithmetic and logical probability which is
the ratio of arithmetic attributes in the data or consequently logical
attributes of data.

Arithmetic Inner Tree probability = number of numerical attributes
total number of attributes

(4)
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Fig. 2. Inner layers.

Data:[ A1 A 2 A 3 A 4 C 1 C 2 C 3 C 4 ],A 1..A4=numerical attributes,C 1..C 4=categorical Attributes 
Instance: [ 1 2 3 -2 a b c d ] Є class 1 
Arithmetic Inner Tree Probability : 4/8=0.5 
Logical Inner Tree Probability : 4/8=0.5 
Inner Tree 1= logical Inner Tree=[(C1=’a’)AND(C2=’b’)]OR[(C4 ’c’)OR(C 1=’d’)] => True 
Inner Tree 2= Arithmetic Inner Tree = (A1/A2) + (A2*A3)=> ½+2*3 => 6.5 => True 
Inner Tree 3= Arithmetic Inner Tree = A1+A4 => 1-2 => -1 => False 
Outer Logical Tree = [(Inner tree1) OR (Inner tree2)] AND NOT (Inner tree3) => True 

Fig. 3. An example of layered classification.

Logical Inner Tree probability = number of categorical attributes
total number of attributes

(5)

The total number of attributes is the sum of categorical and
numerical attributes:

Logical Inner Tree probability = 1 − Arithmetic Inner Tree probability (6)

The next step of proposed algorithm is initialization of two lay-
ered GP classifier trees or expressions. We  have used ramped half
and half initialization method [6] which allows diverse and flexible
population initialization and has been found successful for a variety
of classification problems. The maximum depth limit for the outer
layer has been set between 2 and 4. The inner layers trees are also
created using ramped half and half method with depth limits 2–4.

This implies that the maximum depth of any tree is limited to
eight. The algorithm for creation of layered trees for classification
is explained in Algorithm 1.

Algorithm 1. Layered Tree Initialization
Step 1. Begin

Step 2. For population size

a. Initialize outer layer tree using ramped half

and half method.

b. For each node in outer tree

i.  If (arithmetic probability is met)

1. Create arithmetic inner tree using ramped

half and half method.

ii. Else

1. Create logical inner tree using ramped

half and half method.

c. End for

Step 3. End for

Step 4. End

Fig. 3 elaborates an example of the proposed layered classifi-
cation decision for one data instance. Such evaluations are carried
out for each instance in the training data to estimate the fitness of
a classifier.

We  have used three operators for the evolutionary process,
which are, reproduction, mutation and crossover. The reproduc-
tion operator simply transfers an individual to the next generation.
The individual member is chosen to use fitness proportionate

Parent 1  Parent  2 

2dlihC1dlihC
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OR

T1 T2

NOT

T3

OR

AND

T4 T5
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T6 T7

AND
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T6 T7
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OR

AND

T4 T5

OR

T1 T2

Fig. 4. Crossover operator.
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selection. The individual for mutation is chosen randomly. The
mutation operator randomly selects an inner subtree with 50%
probability. If the root of subtree is a logical node, the subtree is
replaced with a logical expression. On the other hand, if the root of
the subtree is an arithmetic node, the subtree is replaced with a ran-
domly generated arithmetic subtree. If the selected node belongs to
the outer tree, a random outer layered subtree is generated which
replaces the selected subtree.

For crossover, a random node is selected from the outer tree
of both parents and swapped. The only restriction placed on both
‘outer layer’ subtrees is that they should have the same depth.
This restriction has been adopted from the author’s previous work
named DepthLimited Crossover [43] where subtrees of the same
depth are swapped to prevent the increase in classifier size dur-
ing evolution. The process is illustrated in Fig. 4 where T1–T7 are
the inner trees which may  have varying depths. The depth of outer
subtrees must be same for the crossover.

We  have investigated two different fitness functions in our
approach. One is the classification accuracy for the classifier and,
the other is the area under the convex hull. The researchers sug-
gest that, in case of skewed data (the number of instances belonging
to one class are larger in number as compared to other one), high
accuracy may  not represent good discrimination ability of a clas-
sifier [44]. On the other hand, a classifier with higher area under
the convex hull AUC has better discrimination ability. Both fitness
functions are described in Algorithms 2 and 3.
Algorithm 2. Fitness ACC
Step 1: Begin

Step 2: For each data instance

a.  Evaluate logical antecedents using attributes

values of given Instance (Inner Layer)

b. Evaluate arithmetic antecedents using attributes

values of given Instance (Inner Layer)

c. Evaluate the outer expression by substituting

antecedent values

d. If expression == true and data instance ∈ class 1

e. Increment CorrectCount

f.  If expression = false and data instance /∈ class 1

g.  Increment CorrectCount

Step 3: End for

Step 4: Fitness = CorrectCount/number of data instances

Step 5: End

In an evolutionary algorithm, the fitness of every population
member is evaluated in search of a better solution. In our case,
every member is a classifier. All the training instances are used to
calculate fitness (ACC or AUC) of each classifier.
Algorithm 3. Fitness AUC
Step 1: Begin

Step 2: For each data instance

a.  Evaluate logical antecedents using attributes

values of given Instance (Inner Layer)

b. Evaluate arithmetic antecedents using attributes

values of given Instance (Inner Layer)

c. Evaluate the outer expression by substituting

antecedent values

d. Count TruePositive, TrueNegative, FalsePositive

and FalseNegative

Step 3: End for

Step 4:
Fitness = 0.5 * [(TruePositive/(TruePositive + FalseNegative)) +

(TrueNegative/(TrueNegative + FalsePositive))]

Step 5: End

The algorithm is continued for a certain number of generations
in search of better classifiers and terminated if a better solution
has been found or given number of generations have elapsed. The
overall classification algorithm is illustrated in Fig. 5.

4. Results

We have used ten-fold-cross-validation method to obtain the
classification results. The data is divided into ten equal parts, nine

Fig. 5. Algorithm L2GP.

Table 1
GP parameters.

Parameter Value

Initialization method Ramped half and half(depth 2–)
Outer logical layer function set AND, OR, NOT
Arithmetic inner layer function set +, *, −, / (protected division)
Inner logical layer function set AND, OR, NOT
Inner tree maximum depth 4
Outer tree maximum depth 4
Population size ‘N’ 600
Termination criteria User defined generations(250) or 100%

training accuracy
Arithmetic tree terminals Numerical attributes, Constants[0,10]
Logical tree terminals Categorical attribute values
Mutation probability 0.25
Reproduction probability 0.25
Crossover probability 0.5
Mutation criteria Random
Crossover selection Tournament Selection with size 7
Reproduction criteria Fitness proportionate selection

parts are used for training and one part is used for testing phase, this
process is repeated to keep each of the ten parts as testing data once.
The ten-fold-cross-validation process is repeated 5 times. For each
new fold, we  have performed two  independent runs with different
random seeds. This means that, for each dataset, there are total 100
runs. All the reported results have been averaged for testing data
for these 100 runs [35,45].  Table 1 lists the parameters used in the
layered GP system.

The datasets used in the empirical analysis have been taken from
the UCI ML  repository [5].  The properties of data sets are mentioned
in Table 2. In this paper, our investigation is restricted to binary
classification problems only.

Different performance measures have been used, to analyze the
proposed approach. These measures are [44]:

4.1. Accuracy

Accuracy is the prediction rate of a classifier and shows the
percentage of the number of instances correctly classified.

Accuracy = tp + tn

tp + tn + fp + fn
(7)

where tp = true positives, tn = true negatives, fp = false positives and
fn = false negatives.
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Table 2
Datasets properties.

Dataset Instances Attributes Distribution

Japanese credit (CRD) 690 15, 6(continuous), 9(categorical) 44.5, 55.5
Australian credit (AUS) 690 14, 6(numerical), 8 (categorical) 44.5, 55.5
German credit (GER) 1000 20, 7(numerical), 13 categorical 30, 70
Heart  disease (HRT) 270 13, 6(real), 7(binary, nominal, ordered) 44.4, 55.6
Hepititus (HEP) 155 20, 5(numerical), 15(categorical) 20.6, 79.4

Table 3
Average results (test) achieved using accuracy as fitness function.

Data sets tp tn fp fn Accuracy Sensitivity Specificity Auc Auc(acc)

AUS 30.7 30.9 3.0 3.2 90.79 0.90 0.91 0.90 1.00
GER 07.0 72.0 0.0 21 79.00 0.25 1.00 0.62 0.79
HRT 10.5  11.0 2.0 2.9 82.67 0.76 0.84 0.80 0.99
CRD  28.2 28.6 4.3 4.7 86.26 0.85 0.86 0.86 1.00
HEP  06.7 05.4 2.2 0.7 81.00 0.91 0.71 0.80 0.99

Table 4
Average results (test) achieved using AUC as fitness function.

Data sets tp tn fp fn Accuracy Sensitivity Specificity Auc Auc(acc)

AUS 32.0 28.0 2.0 5.0 90.0 0.86 0.93 0.90 1.00
GER  15.0 75.0 4.0 6.0 89.8 0.71 0.94 0.83 0.92
HRT  10.5 11.0 2.0 2.0 81.2 0.80 0.80 0.80 0.99
CRD  28.3 29.2 3.7 4.6 87.3 0.86 0.89 0.87 1.00
HEP  10.0 03.0 0.8 2.0 82.2 0.83 0.78 0.81 0.98

4.2. Sensitivity

The sensitivity is the probability that a positive test, results in
positive. High sensitivity means a large number of positive results
are correctly detected. It is also known as TPR.

Sensitivity = tp

tp + fn
(8)

4.3. Specificity

It measures the proportion of negatives identified as negatives
correctly.

Specificity = tn

tn + fp
(9)

4.4. Area under the convex hull

Area under the convex hull (AUC) has been defined as a measure
that correctly evaluates the discriminating power of a classifier and
acts as a better measure for classifier efficiency than the traditional
classification accuracy, especially for imbalanced data sets.

Area under the convex hull (AUC) =
(

1
2

tp

tp + fn
+ tn

tn + fp

)
(10)

4.5. Area under the convex hull combined with accuracy

This is a new, finer measure that makes use of some other meth-
ods in evaluating performance. It is correlated with the root mean
square error.

AUC (ACC) = sensitivity+specificity
2 ∗ Accuracy

(11)

Tables 3 and 4 present the classification results for the five data
sets using two fitness measures ACC and AUC. The accuracy in both
cases is comparable except for GER and HEP data. The reason is

imbalanced class distribution in these datasets. Here, accuracy does
not represent better discrimination power of a classifier therefore,
it results in less value of AUC. In Table 4, we can see that better
value of AUC has also resulted in better accuracy, but vice versa is
not true for imbalanced datasets. Hence, the cases where the data is
nearly balanced, there is no-noticeable difference in ACC and AUC
of classifiers. As mentioned earlier, the reported results are average
of best individuals obtained in 100 executions for each dataset after
250 generations.

Table 5 presents an example of two  layered rule for German
credit data set, which contains 7 numerical and 13 categorical
attributes. In this rule, there are two  leaf nodes in the outer layer,
one is an arithmetic expression and the other is a logical expression.

Table 6 shows the average accuracy and respective standard
deviations during training and testing phase for all datasets. These
results are reported after every 20 generations, shown in the first
row of the table. The result for testing is generated by extracting the
best classifier after given generations and testing its performance
on test data.

Fig. 6 presents the behavior of average best population members
during the evolution. We  can note increase in average accuracy of
trees for all datasets during evolution. This increase reaches a stable
state around 200 iterations.

We  have also compared the average results of best evolved
classifiers with other GP based classification approaches. It can be
observed that the presented approach yields compatible results
with respect to accuracy. In Table 7, some techniques [41,46]
involve preprocessing while others [26,47] use constrained syntax
GP, to incorporate mixed-type data.

This can be noted that the L2GP approach has produced com-
patible results when compared to other GP based techniques while

Table 5
Two  layered rule for German credit data.

Outer Layer (NOT (T1))OR (T2) (outer layer)
T1 A15 = “A151” Logical Inner Tree
T2 (((A18/A8)/A2) + (A5 * (A18 − A16)) * A13) Arithmetic Inner Tree
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Table  6
Average accuracy of population for training and testing data.

Generations 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00 220.00 240.00

AUS

Train% 80.97 82.35 83.73 83.92 84.83 85.39 86.39 87.67 89.65 91.91 92.37 93.84
Stdev 00.16 00.27 00.33 00.42 00.54 00.59 00.67 00.67 00.74 00.76 00.74 00.71
Test% 81.43 82.70 83.08 83.40 84.03 84.41 85.32 86.17 88.20 88.65 89.62 90.00
Stdev 00.21 00.21 00.10 00.42 00.31 00.10 00.10 00.00 00.31 00.31 00.21 00.10

GER

Train% 56.31 59.60 61.28 63.37 64.79 67.00 71.00 81.00 85.00 86.00 89.00 90.00
Stdev 00.01 00.28 00.21 00.17 00.26 00.31 00.31 00.31 00.40 00.38 00.47 00.42
Test% 58.02 60.98 63.02 65.29 66.45 67.32 69.34 74.59 83.89 88.25 88.81 89.89
Stdev 00.00 00.43 01.71 01.93 01.21 01.00 01.50 01.86 01.86 01.64 01.28 01.21

HRT

Train% 68.10 71.47 73.25 75.72 76.92 78.13 80.53 81.97 83.89 84.62 86.06 89.42
Stdev  00.05 00.28 00.55 00.54 00.38 00.34 00.41 00.54 00.62 00.61 00.58 00.58
Test% 69.84 71.35 72.29 73.62 73.89 75.22 76.02 77.21 77.88 78.28 79.60 81.20
Stdev  00.41 00.41 00.60 00.73 00.81 00.53 00.20 00.09 00.10 00.37 00.98 01.39

CRD

Train% 80.87 83.62 84.75 85.32 86.36 87.41 87.88 88.35 89.83 91.64 91.92 91.92
Stdev 00.02 00.12 00.07 00.09 00.05 00.02 00.02 00.02 00.09 00.07 00.12 00.09
Test% 82.39 83.40 83.70 84.18 84.67 85.15 85.25 85.78 86.71 87.27 87.27 87.28
Stdev  00.21 00.43 02.79 03.22 01.50 00.86 00.64 00.85 00.43 00.22 00.22 00.86

HEP

Train% 55.36 60.42 69.35 72.32 81.25 85.71 86.61 95.54 98.00 98.30 98.30 99.40
Stdev 00.15 00.22 00.25 00.25 00.2 00.12 00.07 03.05 02.00 01.70 01.70 00.60
Test% 57.29 61.89 65.36 68.14 73.35 73.87 76.47 81.68 82.20 82.20 82.20 82.20
Stdev  01.01 01.01 01.01 00.76 00.51 00.76 01.01 01.52 02.53 03.54 04.55 05.05
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Fig. 6. Evolution of best trees during training.

Table 7
Comparison of classification results with other techniques.

Data set L2GP (average accuracy of best classifiers %) Others (accuracy %)

AUS 90

86.3 [21],
85.1 [26],
86 [41],
88.1 [46],
88.3 [42],
90 [47],
88 [48],
83.4 [49]

GER 89.8

72.9 [21],
77.4 [42],
78 [47],
76 [48]

HRT 81.2
77.9 [13],
78.7 [21],
82.2 [24],

CRD 87.3
84.8 [13],
84.7 [24]

enjoying the benefit of discarding the need of any manipulation on
data.

5. Conclusions and future work

In this paper, we have proposed a novel GP based classification
technique that operates upon data with mixed type of attributes.
The technique does not require any transformation or preprocess-
ing of the data. We  have tested the system on several benchmark
datasets and compared the performance with various GP based
classification methods. The results have revealed that the presented
technique offers compatible performance owing to its flexible two
layered representation. The future works include application of this
technique for multi-class classification problems.
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