
Chapter 7
Scalable Knowledge Graph Processing

using SANSA

Hajira Jabeen1, Damien Graux2, and Gezim Sejdiu1,3

1 Smart Data Analytics, University of Bonn, Germany
2 ADAPT SFI Research Centre, Trinity College Dublin, Ireland

3 Deutsche Post DHL Group, Germany

Abstract. The size and number of knowledge graphs have increased
tremendously in recent years. In the meantime, the distributed data
processing technologies have also advanced to deal with big data and
large scale knowledge graphs. This chapter introduces Scalable Semantic
Analytics Stack (SANSA), that addresses the challenge of dealing with
large scale RDF data and provides a unified framework for applications
like link prediction, knowledge base completion, querying, and reasoning.
We discuss the motivation, background and the architecture of SANSA.
SANSA is built using general-purpose processing engines Apache Spark
and Apache Flink. After reading this chapter, the reader should have an
understanding of the different layers and corresponding APIs available
to handle Knowledge Graphs at scale using SANSA.

1 Introduction

Over the past decade, vast amounts of machine-readable structured information
have become available through the increasing popularity of semantic knowledge
graphs using semantic technologies in a variety of application domains includ-
ing general knowledge [25, 448], life sciences [468], scholarly data [129], open
source projects [266], patents [261] or even food recommendations [189]. These
knowledge bases are becoming more prevalent and this trend can be expected
to continue in future.

The size of knowledge graphs has reached the scale where centralised ana-
lytical approaches have become either infeasible or too expensive. Recent tech-
nological progress has enabled powerful distributed in-memory analytics that
have been shown to work well on simple data structures. However, the appli-
cation of such distributed analytics approaches on semantic knowledge graphs
is lagging behind significantly. To advance both the scalability and accuracy of
large-scale knowledge graph analytics to a new level, fundamental research on
methods of leveraging distributed in-memory computing and semantic technolo-
gies in combination with advancements in analytics approaches is indispensable.
In this chapter, we present the Scalable Semantic Analytics Stack (SANSA),
which addresses the challenge of dealing with large scale RDF data and provides
a unified framework for designing complex semantic applications.

98 Hajira Jabeen, Damien Graux, and Gezim Sejdiu

Fig. 1: W3C Semantic Web layer cake.

2 Semantic Layer Cake

As presented in the previous chapters, there are many different types of data
source available that are collecting and providing information structured via dif-
ferent formats. In addition, most of them are available on the Web and often
share some information about the same concepts or entities; as a consequence,
the need to allow alignments between sources has increased. This motivation
fuelled the Semantic Web initiative where the main idea is to enable linkage
between remote data entities so that several facets of information become avail-
able at once. The Semantic Web mainly relies on the dereferencing concept where
identifiers (iris - Internationalised Resource Identifier) are used to represent en-
tities and are therefore to navigate from one piece of information to another.

The Semantic Web has been mainly pushed by the World Wide Web Con-
sortium (W3C), which proposed a set of standards to technically back up this
movement. Practically, these standards are built following a “layer cake” struc-
ture where standards are constructed on top of other ones (see Figure 1). In
particular, the stack is completely built on top of the identifier concept, which
serves as a basis then to represent data using the following RDF structure.

The Semantic Web does not limit its scope to only linking and representing
data on the web; it also provides a range of specifications to help users enrich
their knowledge. First of all, RDF comes with an associated query language
(SPARQL) in order to extract data from sources. Moreover, several standards
specify how to structure the data:

1. The RDF Schema (RDFS) lists a set of classes with certain properties using
the RDF representation data model and provides basic elements for the
description of ontologies.

Chapter 7 Scalable Knowledge Graph Processing using SANSA 99

2. The Web Ontology Language (OWL) is a family of knowledge representa-
tion languages for authoring ontologies which are a formal ways to describe
taxonomies and classification networks, essentially defining the structure of
knowledge for various domains.

3. The Shapes Constraint Language (SHACL) allows to design validations over
graph-based data considering a set of conditions. Among others, it includes
features to express conditions that constrain the number of values that a
property may have, the type of such values, numeric ranges etc. . . .

These specifications then allow users to specify several properties about Semantic
Web data and therefore one can use them to extend one’s own knowledge. Indeed,
ontologies are the cornerstone of all the studies made around inferring data from
a set of triples e.g. using the structure of the graph, it is possible to “materialize”
additional statements and thereby to extend the general knowledge.

As a consequence, the W3C – via the diverse standards and recommendations
it set up – allows users to structure pieces of information. However, the large ma-
jority of existing tools are focusing on one or two standards at once, meaning that
they are usually not encompassing the full scope of what the Semantic Web is
supposed to provide and enable. Indeed, designing such a “wide-scope” Semantic
Web tool is challenging. Recently, such an initiative was created: SANSA [411];
in addition, SANSA also pays attention to the Big Data context of the Semantic
Web and adopts a fully distributed strategy.

3 Processing Big Knowledge Graphs with SANSA

In a nutshell, SANSA4 presents:

1. efficient data distribution techniques and semantics-aware computation of
latent resource embeddings for knowledge graphs;

2. adaptive distributed querying;
3. efficient self-optimising inference execution plans; and
4. efficient distributed machine learning on semantic knowledge graphs of ex-

tremely large scale.

3.1 Knowledge Representation & Distribution

SANSA follows the modular architecture where each layer represents a unique
component of functionality, which could be used by other layers of the SANSA
framework. The Knowledge Representation & Distribution is the lowest layer
on top of the existing distributed computing framework (either Apache Spark5

or Apache Flink6). Within this layer, SANSA provides the functionality to read
and write native RDF or OWL data from HDFS or a local dive and represents

4 http://sansa-stack.net/
5 http://spark.apache.org/
6 https://flink.apache.org/

100 Hajira Jabeen, Damien Graux, and Gezim Sejdiu

it in native distributed data structures of the framework. Currently, it supports
different RDF and OWL serializations / syntax formats. Furthermore, it pro-
vides a dedicated serialization mechanism for faster I/O. The layer also supports
Jena and OWL API interfaces for processing RDF and OWL data, respectively.
This particularly targets usability, as many users are already familiar with the
corresponding libraries.

This layer also gives access to a mechanism for RDF data compression in or-
der to lower the space and processing time when querying RDF data (c.f Section
3.2). It also provides different partitioning strategies in order to facilitate better
maintenance and faster access to this scale of data. Partitioning the RDF data
is the process of dividing datasets in a specific logical and/or physical represen-
tation in order to ease faster access and better maintenance. Often, this process
is performed to improve the system availability, load balancing and query pro-
cessing time. There are many different data partitioning techniques proposed in
the literature. Within SANSA, we provide 1) semantic-based partitioning [392],
2) vertical-based partitioning [411], and 3) graph-based partitioning.

Semantic-based partitioning – A semantically partitioned fact is a tuple (S,R)
containing pieces of information R ∈ (P,O) about the same S where S is a unique
subject on the RDF graph and R represents all its associated facts i.e predicates
P and objects O. This partitioned technique was proposed in the SHARD [376]
system. We have implemented this technique using the in-memory processing
engine, Apache Spark, for better performance.

Vertical partitioning – The vertical partitioning approach in SANSA is de-
signed to support extensible partitioning of RDF data. Instead of dealing with a
single three-column table (s, p, o), data is partitioned into multiple tables based
on the used RDF predicates, RDF term types and literal datatypes. The first
column of these tables is always a string representing the subject. The second
column always represents the literal value as a Scala/Java datatype. Tables for
storing literals with language tags have an additional third string column for the
language tag.

In addition, this layer of SANSA allows users to compute RDF statistics [391]
and to apply quality assessment [393] in a distributed manner. More specifically,
it provides a possibility to compute different RDF dataset statistics in a dis-
tributed manner via the so-called DistLODStats [392] software component. It
describes the first distributed in-memory approach for computing 32 different
statistical criteria for RDF datasets using Apache Spark. The computation of
statistical criteria consists of three steps: (1) saving RDF data in scalable stor-
age, (2) parsing and mapping the RDF data into the main dataset – an RDD
data structure composed of three elements: Subject, Property and Object, and
(3) performing statistical criteria evaluation on the main dataset and generating
results.

Fetching the RDF data (Step 1): RDF data needs first to be loaded into a
large-scale storage that Spark can efficiently read from. For this purpose, we
use HDFS (Hadoop Distributed File-System). HDFS is able to accommodate
any type of data in its raw format, horizontally scale to arbitrary number of

Chapter 7 Scalable Knowledge Graph Processing using SANSA 101

triples

HDFS Main Dataset
RDD

Statistical
Results

Computing

DistLODStats

3

Filtering

1

2

HDFS triples file to
triples RDD

s p o
Rule's Filter Rule's Action / Post Proc.

Fig. 2: Overview of DistLODStats’s abstract architecture [392].

nodes, and replicate data among the cluster nodes for fault tolerance. In such
a distributed environment, Spark adopts different data locality strategies to try
to perform computations as close to the needed data as possible in HDFS and
thus avoid data transfer overhead.

Parsing and mapping RDF into the main dataset (Step 2): In the course
of Spark execution, data is parsed into triples and loaded into an RDD of the
following format: Triple<Subj,Pred,Obj> (by using the Spark map transforma-
tion).

Statistical criteria evaluation (Step 3): For each criterion, Spark generates
an execution plan, which is composed of one or more of the following Spark
transformations: map, filter, reduce and group-by. Filtering operation apply the
Rule’s Filter and produce a new filtered RDD. The filtered RDD will serve as an
input to the next step: Computing where the rule’s action and/or post processing
are effectively applied. The output of the Computing phase will be the statistical
results represented in a human-readable format, e.g. VoID, or row data.

Often when designing and performing large-scale RDF processing tasks, the
quality of the data is one of the key components to be considered. Existing solu-
tions are not capable of dealing with such amounts of data, therefore a need for a
distributed solution for a quality check arises. To address this, within SANSA we
present DistQualityAssessment [393] – an open-source implementation of quality
assessment of large RDF datasets that can scale out to a cluster of machines.
This is the first distributed, in-memory approach for computing different quality
metrics for large RDF datasets using Apache Spark. We also provide a quality
assessment pattern that can be used to generate new scalable metrics that can
be applied to big data. A more detailed overview of the approach is given below.
The computation of the quality assessment using the Spark framework consists
of four steps:

Defining quality metrics parameters The metric definitions are kept in a ded-
icated file, which contains most of the configurations needed for the system to
evaluate quality metrics and gather result sets.

Retrieving the RDF data RDF data first needs to be loaded into a large-scale
storage that Spark can efficiently read from. We use Hadoop Distributed File-

102 Hajira Jabeen, Damien Graux, and Gezim Sejdiu

System (HDFS). HDFS is able to fit and store any type of data in its Hadoop-
native format and parallelize them across a cluster while replicating them for
fault tolerance. In such a distributed environment, Spark automatically adopts
different data locality strategies to perform computations as close to the needed
data as possible in HDFS and thus avoids data transfer overhead.

Parsing and mapping RDF into the main dataset We first create a distributed
dataset calledmain dataset that represent the HDFS file as a collection of triples.
In Spark, this dataset is parsed and loaded into an RDD of triples having the
format Triple<(s,p,o)>.

Quality metric evaluation Considering the particular quality metric, Spark
generates an execution plan, which is composed of one or more Spark transfor-
mations and actions. The numerical output of the final action is the quality of
the input RDF corresponding to the given metric.

3.2 Query

As presented before, the Semantic Web designed several standards on top of
RDF. Among them, one is to manipulate RDF data: SPARQL. In a nutshell, it
constitutes the de facto querying language for RDF data and hereby provides a
wide range of possibilities to either extract, create or display information.

The evaluation of SPARQL has been a deeply researched topic by the Seman-
tic Web communities for approximately twenty years now; dozens of evaluators
have been implemented, following as many different approaches to store and
organise RDF data7. Recently, with the increase of cloud-based applications, a
new range of evaluators have been proposed following the distributed paradigm
which usually suits Big Data applications8.

Distributed RDF data As part of the SANSA stack, a layer has been devel-
oped to handle SPARQL queries in a distributed manner and it offers several
strategies in order to fit users’ needs. Actually, following existing studies from the
literature, the developers decided by default to rely on the Apache Spark SQL
engine: in practice, the SPARQL queries asked by the users are automatically
translated in SQL to retrieve information from the in-memory virtual tables (the
Sparklify [411] approach) created from the RDF datasets. Such a method then
allows SANSA to take advantage of the relational engine of Spark especially
designed to deal with distributed Big Data. In parallel, other evaluation strate-
gies are available to fit specific use-cases as they consist of different distribution
strategies of the original RDF data in memory. While the default (vertical) parti-
tioning scheme splits datasets into blocks based on common predicates, SANSA
provides an implementation of the semantic partitioning [392] based on common
subjects. It also has built-in features enabling compression on-the-fly, which al-
lows it to handle bigger datasets.

7 See [131] for a comprehensive survey of single-node RDF triplestores.
8 See [235] or [169] for an extensive review of the cloud-based SPARQL evaluators.

Chapter 7 Scalable Knowledge Graph Processing using SANSA 103

SANSA Engine

RDF Layer

Data Ingestion

Partitioning

1

2

Query Layer

Sparklifying

Views Views

3

Distributed Data
Structures

Results

R
D

F
 D

at
a

7

8SELECT ?s ?w WHERE {
?s a dbp:Person .
?s ex:workPage ?w .
}S

P
A

R
Q

L

Prefix dbp:<http://dbpedia.org/ontology/>
Prefix ex:<http://ex.org/>

Create View view_person As
 Construct {
 ?s a dbp:Person .
 ?s ex:workPage ?w .
 }
With
 ?s = uri('http://mydomain.org/person', ?id)
 ?w = uri(?work_page)
Constrain
 ?w prefix "http://my-organization.org/user/"
From
 person;

SELECT id, work_page
FROM view_person ;

S
Q

L
A

E
T

SPARQL query

SPARQL Algebra
Expression Tree (AET)

Normalize AET

4

5 6

Fig. 3: SANSA’s Query Layer Architecture Overview.

The overall system architecture is shown in Figure 3. It consists of four main
components: Data Model, Mappings, Query Translator and Query Evaluator.

Data Ingestion (step 1) RDF data first needs to be loaded into large-scale storage
that Spark can efficiently read from.

We use the Hadoop Distributed File-System (HDFS) [62]. Spark employs
different data locality schemes in order to accomplish computations nearest to
the desired data in HDFS, as a result avoiding i/o overhead.

Data Partition (step 2) The vertical partitioning approach in SANSA is de-
signed to support extensible partitioning of RDF data. Instead of dealing with a
single three-column table (s, p, o), data is partitioned into multiple tables based
on the used RDF predicates, RDF term types and literal datatypes. The first
column of these tables is always a string representing the subject. The second
column always represents the literal value as a Scala/Java datatype. Tables for
storing literals with language tags have an additional third string column for the
language tag.

Mappings/Views After the RDF data has been partitioned using the extensible
VP (as it has been described on step 2), the relational-to-RDF mapping is per-
formed. Sparqlify supports both the W3C standard R2RML sparqlification [412].

The main entities defined with SML are view definitions. See step 5 in the
Figure 3 as an example. The actual view definition is declared by the Create
View . . .As in the first line. The remainder of the view contains these parts:
(1) the From directive defines the logical table based on the partitioned table
(see step 2). (2) an RDF template is defined in the Construct block containing,

104 Hajira Jabeen, Damien Graux, and Gezim Sejdiu

URI, blank node or literals constants (e.g. ex:worksAt) and variables (e.g. ?emp,
?institute). The With block defines the variables used in the template by means
of RDF term constructor expressions whose arguments refer to columns of the
logical table.

Query Translation This process generates a SQL query from the SPARQL query
using the bindings determined in the mapping/view construction phases. It
walks through the SPARQL query (step 4) using Jena ARQ9 and generates
the SPARQL Algebra Expression Tree (AET). Essentially, rewriting SPARQL
basic graph patterns and filters over views yields AETs that are UNIONS of
JOINS. Further, these AETs are normalized and pruned in order to remove
UNION members that are known to yield empty results, such as joins based on
IRIs with disjointed sets of known namespaces, or joins between different RDF
term types (e.g. literal and IRI). Finally, the SQL is generated (step 6) using
the bindings corresponding to the views (step 5).

Query Evaluation Finally, the SQL query created as described in the previous
section can now be evaluated directly into the Spark SQL engine. The result set
of this SQL query is a distributed data structure of Spark (e.g. DataFrame)(step
7), which then is mapped into SPARQL bindings. The result set can be further
used for analysis and visualization using the SANSA-Notebooks10 (step 8).

Data Lake SANSA also has a DataLake component which allows it to query
heterogeneous data sources ranging from different databases to large files stored
in HDFS, to NoSQL stores, using SPARQL. SANSA DataLake currently sup-
ports CSV, Parquet files, Cassandra, MongoDB, Couchbase, ElasticSearch, and
various JDBC sources e.g., MySQL, SQL Server. Technically, the given SPARQL
queries are internally decomposed into subqueries, each extracting a subset of
the results.

The DataLake layer consists of four main components (see numbered boxes
in the Figure 4). For the sake of clarity, we use here the generic ParSets and DEE
concepts instead of the underlying equivalent concrete terms, which differ from
engine to engine. ParSet, from Parallel dataSet, is a data structure that can be
distributed and operated in parallel. It follows certain data models, like tables
in tabular databases, graphs in graph databases, or documents in a document
database. DEE, from Distributed Execution Environment, is the shared physical
space where ParSets can be transformed, aggregated and joined together.
The architecture accepts three user inputs:

– Mappings: it contains associations between data source entities11 and at-
tributes to ontology properties and classes.

9 https://jena.apache.org/documentation/query/
10 https://github.com/SANSA-Stack/SANSA-Notebooks
11 These entities can be, for example, table and column in a tabular database or col-

lection and document in a document database.

Chapter 7 Scalable Knowledge Graph Processing using SANSA 105

Fig. 4: SANSA’s DataLake Layer Internal Architecture [295].

– Config: it contains the access information needed to connect to the heteroge-
neous data sources, e.g., username, password, or cluster setting, e.g., hosts,
ports, cluster name, etc.

– Query: a query in the SPARQL query language.

The fours components of the architecture are described as follows:

Query Decomposor This component is commonly found in OBDA and query
federation systems. It decomposes the query’s Basic Graph Pattern (BGP, con-
junctive set of triple patterns in the where clause) into a set of star-shaped sub-
BGPs, where each sub-BGP contains all the triple patterns sharing the same
subject variable. We refer to these sub-BGPs as stars for brevity (see below
figure left; stars are shown in distinct colored boxes).

Relevant Entity Extractor For every extracted star, this component looks in the
Mappings for entities that have attributes mapping to each of the properties of
the star. Such entities are relevant to the star.

Data Wrapper In the classical OBDA, a SPARQL query has to be translated
to the query language of the relevant data sources. This is, in practice, hard
to achieve in the highly heterogeneous Data Lake settings. Therefore, numerous
recent publications advocated for the use of an intermediate query language. In
our case, the intermediate query language is DEE’s query language, dictated by

106 Hajira Jabeen, Damien Graux, and Gezim Sejdiu

Fig. 5: From query to ParSets to joins between ParSets.

its internal data structure. The Data Wrapper generates data in POA’s data
structure at query-time, which allows for the parallel execution of expensive
operations, e.g., join. There must exist wrappers to convert data entities from
the source to DEE’s data structure, either fully or partially if parts of the data
can be pushed down to the original source. Each identified star from step (1)
will generate exactly one ParSet. If more than an entity is relevant, the ParSet is
formed as a union. An auxiliary user input Config is used to guide the conversion
process, e.g., authentication, or deployment specifications.

Distributed Query Processor Finally, ParSets are joined together forming the
final results. ParSets in the DEE can undergo any query operation, e.g., selection,
aggregation, ordering, etc. However, since our focus is on querying multiple data
sources, the emphasis is on the join operation. Joins between stars translate into
joins between ParSets (Figure 5 phase I). Next, ParSet pairs are all iteratively
joined to form the Results ParSet (Figure 5 phase II). In short, extracted join
pairs are initially stored in an array. After the first pair is joined, it iterates
through each remaining pair to attempt further joins or, else, add to a queue.
Next, the queue is similarly iterated; when a pair is joined, it is unqueued.
The algorithm completes when the queue is empty. As the Results ParSet is
a ParSet, it can also undergo query operations. The join capability of ParSets
in the DEE replaces the lack of the join common in many NoSQL databases,
e.g., Cassandra, MongoDB. Sometimes ParSets cannot be readily joined due to
a syntactic mismatch between attribute values; nevertheless, SANSA provides a
method to correct these mismatches, thereby enabling the joins.

3.3 Inference

Both RDFS and OWL contain schema information in addition to links between
different resources. This additional information and rules allows users to perform
reasoning on the knowledge bases in order to infer new knowledge and expand

Chapter 7 Scalable Knowledge Graph Processing using SANSA 107

existing knowledge. The core of the inference process is to continuously apply
schema-related rules on the input data to infer new facts. This process is helpful
for deriving new knowledge and for detecting inconsistencies. SANSA provides
an adaptive rule engine that can use a given set of arbitrary rules and derive
an efficient execution plan from those. Later, that execution plan is evaluated
and run against underlying engines, i.e. Spark SQL, for an efficient and scalable
inference process.

3.4 Machine Learning

SANSA-ML is the Machine Learning (ML) library in SANSA. Algorithms in this
repository perform various machine learning tasks directly on RDF/OWL input
data. While most machine learning algorithms are based on processing simple
features, the machine learning algorithms in SANSA-ML exploit the graph struc-
ture and semantics of the background knowledge specified using the RDF and
OWL standards. In many cases, this allows users to obtain either more accurate
or more human-understandable results. In contrast to most other algorithms
supporting background knowledge, the algorithms in SANSA scale horizontally
using Apache Spark. The ML layer currently supports numerous algorithms for
Clustering, Similarity Assessment of entities, Entity Linking, Anomaly Detec-
tion and Classification using Graph Kernels. We will cover these algorithms in
the context of knowledge graphs in the following section.

3.5 Semantic Similarity Measures

SANSA covers the semantic similarities used to estimate the similarity of con-
cepts defined in ontologies and, hence, to assess the semantic proximity of the
resources indexed by them. Most of the approaches covered in the SANSA sim-
ilarity assessment module are feature-based. The feature model requires the se-
mantic objects to be represented as sets of features. Tversky was the first to
formulate the concept of semantic similarity using the feature model, from which
a family of semantic measures has been derived. The similarity measure in this
context is defined as a function (set-based or distance-based measure) on the
common features of the objects under assessment.

Jaccard Similarity For any two nodes u and v of a data set, the Jaccard
similarity is defined as:

SimJaccard(u, v) =
|f(u) ∩ f(v)|
|f(u) ∪ f(v)| (1)

Here, f(u) is the subset of all neighbours of the node u and |f(u)| the cardinality
of f(u) that counts the number of elements in f(u).

108 Hajira Jabeen, Damien Graux, and Gezim Sejdiu

Rodŕıguez and Egenhofer similarity Another example of feature-based
measure implemented in SANSA is by Rodŕıguez and Egenhofer [181].

SimRE(u, v) =
|f(u) ∩ f(v)|

γ · |f(u) \ f(v)|+ (1− γ) · |f(v) \ f(u)|+ |f(u) ∩ f(v)| (2)

where γ ∈ [0, 1] allows to adjust measure symmetry.

Ratio Model Tversky defined a parameterized semantic similarity measure
which is called the ratio model (SimRM) [181]. It can be used to compare two
semantic objects (u; v) through its respective sets of features U and V :

SimRM (u, v) =
|f(u) ∩ f(v))|

α|f(u) \ f(v)|) + β|f(v) \ f(u)|+ γ|f(u) ∩ f(v))| (3)

with α,β and γ ≥ 0.
Here, |f(u)| is the cardinality of the set f(u) composed of all neighbours

of u. Setting SimRM with α = β = 1 leads to the Jaccard index, and setting
α = β = 0.5 leads to the Dice coefficient. In other words, set-based measures
can be used to easily express abstract formulations of similarity measures. Here,
we set α = β = 0.5.

Batet Similarity Batet et al. represent the taxonomic distance as the ratio
between distinct and shared features [31]. Batet similarity can be defined as
follows:

SimBatet(u, v) = log2

�
1 +

|f(u) \ f(v)|+ |f(v) \ f(u)|
|f(u) \ f(v)|+ |f(v) \ f(u)|+ |f(u) ∩ f(v)|

�
(4)

For any node u, the notation f(u) stands for the set of all neighbours of u.

3.6 Clustering

Clustering is the class of unsupervised learning algorithms that can learn without
the need for the training data. Clustering is aimed to search for common patterns
and similar trends in the knowledge graphs. The similarity of patterns is mostly
measured by a given similarity measure, e.g the measures covered in the previous
section. Below, we cover the clustering algorithms implemented in SANSA for
knowledge graphs.

PowerIteration Clustering PowerIteration (PIC) [284] is a fast spectral clus-
tering technique. It is a simple (it only requires a matrix-vector multiplication
process) and scalable algorithm in terms of time complexity, O(n). PIC requires
pairwise vertices and their similarities as input and outputs the clusters of ver-
tices by using a pseudo-eigenvector of the normalized affinity matrix of the graph.

Chapter 7 Scalable Knowledge Graph Processing using SANSA 109

Although the PowerIteration method approximates only one eigenvalue of a ma-
trix, it remains useful for certain computational problems. For instance, Google
uses it to calculate the PageRank of documents in its search engine, and Twitter
uses it to show follow recommendations. Spark.mllib includes an implementation
of PIC using GraphX. It takes an RDD of tuples, which are vertices of an edge,
and the similarity among the two vertices and outputs a model with clustering
assignments.

BorderFlow Clustering BorderFlow [325] is a local graph clustering which
takes each node as the starting seed and iteratively builds clusters by merging the
nodes using BorderFlow-ratio. The clusters must have a maximal intra-cluster
density and inter-cluster sparseness. When considering a graph as the description
of a flow system, this definition of a cluster implies that a cluster X is a set
of nodes such that the flow within X is maximal while the flow from X to the
outside is minimal. At each step, a pair of nodes is merged if the border flow ratio
is maximised and this process is repeated until the termination criterion is met.
BorderFlow is a parameter-free algorithm and it has been used successfully in
diverse applications including clustering protein-protein interaction (PPI) data
[324] and query clustering for benchmarking [313].

Linked-based Clustering Link information plays an important role in dis-
covering knowledge from data. The link-based graph clustering [156] algorithm
results in overlapping clusters. Initially, each link represents its own group; the
algorithm recursively merges the links using similarity criteria to optimize the
partition density until all links are merged into one, or until the termination
condition is met. To optimize performance, instead of selecting arbitrary links,
the algorithm only considers the pair of links that share a node for merging.

Fig. 6: A Semantic-Geo Clustering flow.

Building clustering processes [95] SANSA proposes a flexible architecture to
design clustering pipelines. For example, having points of interest (POI) datasets,
SANSA can aggregate them according to several dimensions in one pipeline:
their labels on the first hand and their localisation on the other hand. Such an
architecture is presented in Figure 6.

110 Hajira Jabeen, Damien Graux, and Gezim Sejdiu

The approach contains up to five main components (which could be en-
abled/disabled if necessary), namely: data pre-processing, SPARQL filtering,
word embedding, semantic clustering and geo-clustering. In semantic-based clus-
tering algorithms (which do not consider POI locations but rather aim at group-
ing POIs according to shared labels), there is a need to transform the POIs
categorical values to numerical vectors to find the distance between them. So
far, any word-embedding technique can be selected among the three available
ones, namely one-hot encoding, Word2Vec and Multi-Dimensional Scaling. All
the abovementioned methods convert categorical variables into a form that could
be provided to semantic clustering algorithms to form groups of non-location-
based similarities. For example, all restaurants are in one cluster whereas all the
ATMs are in another one. On the other hand, the geo-clustering methods help
to group the spatially closed coordinates within each semantic cluster.

More generically, SANSA’s architecture and implementation allow users to
design any kind of clustering combinations they would like. Actually, the solution
is flexible enough to pipe together more than two clustering “blocks” and even
to add additional RDF datasets into the process after several clustering rounds.

3.7 Anomaly Detection

With the recent advances in data integration and the concept of data lakes, mas-
sive pools of heterogeneous data are being curated as Knowledge Graphs (KGs).
In addition to data collection, it is of the utmost importance to gain meaningful
insights from this composite data. However, given the graph-like representation,
the multimodal nature, and large size of data, most of the traditional analytic
approaches are no longer directly applicable. The traditional approaches collect
all values of a particular attribute, e.g. height, and perform anomaly detection for
this attribute. However, it is conceptually inaccurate to compare one attribute
representing different entities, e.g. the height of buildings against the height of
animals. Therefore, there is a strong need to develop fundamentally new ap-
proaches for outlier detection in KGs. SANSA presents a scalable approach that
can deal with multimodal data and performs adaptive outlier detection against
the cohorts of classes they represent, where a cohort is a set of classes that are
similar based on a set of selected properties. An overview of the scalable anomaly
detection [216] in SANSA can be seen in Figure 7.

Fig. 7: Anomaly detection execution pipeline.

Chapter 7 Scalable Knowledge Graph Processing using SANSA 111

3.8 Entity Linking

Entity resolution is the crucial task of recognizing and linking entities that point
to the same real-world object in various information spaces. Entity linking finds
its application in numerous tasks like de-duplicating entities in federal datasets
related to medicine, finance, transportation, business and law enforcement, etc.
With the growth of the web in terms of volume and velocity, the task of linking
records in heterogeneous data collections has become more complicated. It is
difficult to find semantic relations between entities across different datasets con-
taining noisy data and missing values with loose schema bindings. At the same
time, pairwise comparison of entities over large datasets implies and exhibits
quadratic complexity. Some recent approaches reduce this complexity by ag-
gregating similar entities into blocks. In SANSA, we implement a more generic
method for entity resolution that does not use blocking and significantly re-
duces the quadratic comparisons. In SANSA, we use scalable techniques like
vectorization using hashingTF, count-vectorization and Locality Sensitive Hash-
ing [190] to achieve almost linear performance for large-scale entity resolution.
An overview of the approach used in SANSA can be seen in Figure 8.

SANSA

Dataset2
RDD

Dataset1
RDD

Filtering and
Entity_Profiles

formation
<s, p+o>

<s, p+o>

MinHash LSH
subjects

<s, p+o>

<s, p+o>

<s, t_s>

<s, t_s>

<e1,e2>

Jaccard_Similarity
Predicates(Jp)

<e1,e2>
<e1,e2> <e1,e2>

Jaccard_Similarity
Objects(Jo)

t_s are tokenised
subjects

ENTITY RESOLUTION

Fig. 8: Overview of Scalable Entity Linking.

3.9 Graph Kernels for RDF

Many machine learning algorithms strongly depend on the specific structure of
the data, which forces users to fit their observations in a particular predefined set-
ting or re-implement the algorithms to fit their requirements. For dynamic data
models like Knowledge Graphs that can operate on schema-free structures, tech-
niques like propositionalization or graph kernels are used. Inspired by [287], we
developed graph kernels in SANSA. The walk kernel corresponds to a weighted
sum of the cardinality of walks up to a given length. The number of paths can
be calculated either by breadth-first search or by multiplication of the adjacency
matrix. A path kernel is similar to walk kernel, but it counts the number of paths
instead. Unlike walks, paths must consist of distinct vertices. SubtreekKernels
attempt to limit the calculations of kernels by selecting subgraphs identified with

112 Hajira Jabeen, Damien Graux, and Gezim Sejdiu

a central entity, and sharing a common structure. This enables a replacement
of the intersection graph with other suitable structures. The full subtree kernels
are based on the number of full subtrees contained in the intersection graph.
The kernels, in general, return the set of feature vectors for the entities that can
be further used in algorithms, like neural networks support vector machines or
similar algorithms working on numerical data.

Apart from the analytics mentioned in this section, SANSA provides addi-
tional algorithms for rule mining, cluster evaluation, graph kernels as well. All
of these algorithms are being continuously extended and improved. In addition,
more algorithms are being added with time.

4 Grand Challenges and Conclusions

In this chapter, we provide an overview of SANSA’s functionalities: an engine
that attempts to fill the gap pointed in Chapter 3. SANSA is the only compre-
hensive system that addresses several challenges and provides libraries for the
development of a knowledge graph value chain ranging from acquisition, dis-
tribution, and querying to complex analytics (see for instance [170, 415] where
complex analyses were successfully computed on the Ethereum blockchain using
SANSA).

The SANSA stack is a step in the direction of offering a seamless solution to
help users dealing with big knowledge graphs. As a consequence, there are still
grand challenges to face:

– Availability of data in RDF. This challenge is to be linked to the research
directions on federated queries (Chapter 5) and to the design of mappings
(Chapter 4) to pave the road for datalake-oriented solutions such as the one
presented by Mami et al. [295]. While the representation of data as knowl-
edge graphs has gained lots of traction and large-scale knowledge graphs are
being created, a majority of data being created and stored is not-RDF and
therefore challenges such as the necessary efforts for data cleaning, and/or
data maintenance should be taken into account.

– RDF and Query layer. The distributed context requires smart partition-
ing methods (see [53] and [235] for detailed taxonomies) aligned with the
querying strategies. One possibility would be to have dynamic partitioning
paradigms which could be automatically selected based on data shape and/or
query patterns, as envisioned in [14].

– In a distributed context, processes often share resources with concurrent
processes, and therefore the definition itself of what is a “good” query answer
time may vary, as reviewed in the context of distributed RDF solutions by
Graux et al. in [169]. One could think of basing this performance evaluation
on use-cases.

– Machine Learning and Partial access to data. Most machine learning algo-
rithms generally require access to all the training data and work by iterating
over the training data to fit the desired loss function. This is challenging

Chapter 7 Scalable Knowledge Graph Processing using SANSA 113

in the distributed setting where one might need to use multiple local learn-
ers or query processors (each working on a subset of the data) and optimize
globally over (or collect) partial local results. For very large-scale distributed
data, this working model may not be suitable [343]. Hence, there is a strong
need to develop fundamentally new algorithms that can work with partial
access to the data.

– Challenge on the Semantic Web itself. At the moment, using W3C stan-
dards, it is hard to be as expressive as with Property Graphs. This has led
to the creation of RDF* [185, 184] in order to allow Semantic Web users to
express statements of statements within an RDF extension. These new pos-
sibilities imply that the current landscape incorporates this extension while
guaranteeing the same performances as before.

