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a b s t r a c t

Genetic Programming (GP) provides a novel way of classification with key features like transparency,
flexibility and versatility. Presence of these properties makes GP a powerful tool for classifier evolution.
However, GP suffers from code bloat, which is highly undesirable in case of classifier evolution. In this
paper, we have proposed an operator named ‘‘DepthLimited crossover’’. The proposed crossover does
not let trees increase in complexity while maintaining diversity and efficient search during evolution.
We have compared performance of traditional GP with DepthLimited crossover GP, on data classification
problems and found that DepthLimited crossover technique provides compatible results without expand-
ing the search space beyond initial limits. The proposed technique is found efficient in terms of classifi-
cation accuracy, reduced complexity of population and simplicity of evolved classifiers.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Genetic Programming (GP) introduced by Koza (1992) is used to
automatically construct and evolve computer programs. This new
flexible and interesting technique has solved numerous interesting
applications. One of these applications is data classification. The
need of data classification arises for the tasks like face recognition,
speech recognition, fraud detection and knowledge extraction from
databases etc.

Data classification can be defined as assigning class labels to a
data instance based upon knowledge gained from previously seen
labeled data. Various classification algorithms have been proposed
and used for their simplicity, understandability or accuracy. Sim-
pler techniques like decision trees are simple and understandable
but applicable to small data sets only. Whereas statistical tech-
niques or neural networks require expertise and the results are
not comprehensible.

GP offers a distinctive method of representing classifiers in the
form of ‘‘Numeric Expression Trees’’ (Loveard & Ciesielski, 2001), or
‘‘Genetic Programming Classifier Expressions’’ (Kishore, Patnaik,
Mani, & Agrawal, 2000). These expression trees are evolved using
terminal set containing attribute values and an ephemeral con-
stant, and function set containing arithmetic operators +, �, �
and /. For each data instance the tree outputs a real integer. This
value is mapped to a class. This value-to-class mapping is simple
in case of binary classification where positive value corresponds
to one class and negative value to the other. The challenge arises
in case of multi-class classification, where a single real output is
ll rights reserved.
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to be mapped to more than two classes. Several methods have been
proposed in this regard. One of these methods assigns different
thresholds for different classes, this includes static thresholds
(Loveard & Ciesielski, 2001; Yang & Smart, 2004), dynamic thresh-
olds (Yang & Smart, 2004) and slotted thresholds (Yang & Smart,
2004). Another method is binary decomposition proposed by
Kishore et al. (2000) and Loveard & Ciesielski (2001). A multi-class
problem is decomposed into several binary problems and different
classifiers are evolved for each class. The result is as many classifi-
ers as there are classes in the data. In this method only one classi-
fier is supposed to output a positive value, or a conflict arise, for
which different conflict resolution methods are present in the liter-
ature (Kishore et al., 2000; Muni, Pal, & Das, 2004).

GP is an evolutionary algorithm using the recombination oper-
ators like crossover and mutation. Crossover is the method of
swapping two subtrees from two parent trees and mutation ran-
domly changes a part of a selected tree. Both these operators play
an important role to search through the hyperspace of desired
solutions and maintain genetic diversity in GP.

The GP based classification has several advantages over other
classification techniques. The GP evolved classifiers are transparent
and clearly show the relationship among attributes of data in
form of a mathematical equation (Kishore et al., 2000) or rules
(Engelbrecht, Rouwhorst, & Scheoman, 2002) depending upon the
type of data and primitive set used for classifier evolution. The size
and structure of a GP tree is not fixed, which offers a flexible search
space to probe for the best classification rule. GP has freedom of
expression in every way, until it adds to the classification accuracy
and adheres to the initial syntax defined for tree structure. GP is
readily applicable to the data in its original form and no transfor-
mation of data is required (Kishore et al., 2000). GP has an inherent
ability to model the data dependence in its evolving structures
sover in GP for classifier evolution. Computers in Human Behavior (2010),
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without any explicit knowledge of underlying structure of depen-
dencies. GP can eliminate attributes unnecessary for classification
task, discarding the need of explicit feature extraction algorithm
(Kishore et al., 2000).

In addition to above mentioned benefits, GP has a well known
drawback of increase in population complexity during evolution
(Poli, Langdon, & McPhee, 2008). That is the average number of
nodes in population starts increasing. This increase in tree size is
also termed as code bloat or code growth. In case of classifier evo-
lution, one is always interested in evolving simple and comprehen-
sible rules (Carreno, Leguizamon, & Wagner, 2007). The increase in
complexity of evolved expressions makes them less understand-
able. Larger trees tend to over-fit the training data decreasing the
testing accuracy (Kotsiantis, 2007) whereas the population is
evolved in anticipation of increase in accuracy over unseen data.
Moreover, larger and complex population adds more computation
time in an already computationally expensive technique. These
factors raise the need of evolving simpler classifiers using lesser
computation and time.

In this paper we propose a method to overcome this drawback
of increase in complexity in terms of average number of nodes by
limiting the depth of subtrees for crossover operation (DepthLim-
ited crossover). ‘‘Depth of a node is number of edges that need to
be traversed to reach the node starting from the tree’s root node
(which is assumed to be at depth 0). The depth of a tree is the
depth of its deepest leaf’’ (Poli et al., 2008). The proposed method
is efficient in terms of classification accuracy and it does not let the
complexity of trees increase during the evolution. In this paper we
have

� Presented a new crossover operator
� Eliminated bloat by limiting the search space
� Reduced the complexities of evolved classifiers
� Achieved compatible classification results

After a brief introduction in Section 1, Section 2 discusses work
relevant to classification and different crossover techniques used in
GP. Section 3 presents and explains the work proposed by authors.
Obtained results are organized and discussed in Section 4. Section 5
concludes the findings and highlights possible future work.
2. Literature review

GP has been of interest for various researchers. The research
directions covered in this part include use of GP for classification,
reasons for occurrence of code bloat and proposition of crossover
operators to reduce bloat or to favor efficient search.

2.1. GP for classification

GP has been an area of interest for various researchers during
the previous years. It had been applied to solve various problems,
one of those being data classification. Several methods have been
proposed to tackle data classification. They can be categorized into
three different types.

2.1.1. Evolution of classification algorithms
In some works (Pappa & Freitas, 2006) the grammar to GP evo-

lution is evolved in such a way that ultimate result is a feasible
classification algorithm. For algorithm evolution, GP uses some
type of constrained syntax/grammar so that the trees can trans-
form into an algorithm and remain valid after application of evolu-
tionary operators. Other methods to evolve classification
algorithms like decision trees (Eggermont, 2005) and fuzzy deci-
sion trees have also been presented.
Please cite this article in press as: Jabeen, H., & Baig, A. R. DepthLimited cros
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2.1.2. Evolution of classification rules
Evolution of classification rules have been proposed by

various researchers (Carreno et al., 2007; Engelbrecht et al.,
2002; Johansson, Niklasson, & König, 2007). In this type of methods
GP trees are evolved as logical rules. These methods are usually
applied to categorical, nominal or mixed data.

2.1.3. Evolution of classification expressions
A newer and somewhat GP specific method is evolution of clas-

sifiers in the form of mathematical expressions (Kishore et al.,
2000; Muni et al., 2004; Yang & Smart, 2004). In this type of clas-
sification the classifiers are evolved in the form mathematical dis-
criminating expressions. A classifier expression is created using
numerical attributes of the data and some random constants. The
value of expression is evaluated for every instance of the data
where the output is a real value. This real output is mapped onto
different classes of the data.

2.1.4. Multi-class classification
One of the simple methods of using classifier expressions for

multiclass classification is binary decomposition proposed by
Kishore et al. (2000) and Loveard and Ciesielski (2001) .One expres-
sion is evolved for each class present in the dataset considering all
the other classes as reject class using classification accuracy as fit-
ness measure. The cumulative result of expressions for each class is
used to determine the final classification decision. A relatively dif-
ferent approach is used by (Smart & Zhang, 2005), in which dis-
criminating distances are also used as a fitness measure and
evolved classifiers in one evolutionary cycle, another method used
by (Yang & Smart, 2004) is using different thresholds (boundaries)
for different classes, various thresholds mechanisms (static, dy-
namic, slotted) have been presented. A GA inspired approach is
presented by Muni et al. (2004) where classifiers for each class
are evolved as a chromosome containing discriminating expres-
sions for each class. Fitness is classification accuracy of whole
chromosome.

None of the above methods use any explicit mechanism to
avoid code bloat, limits to max tree size (Muni et al., 2004), or
max tree depth (Smart & Zhang, 2005) are applied avoid increase
in tree complexities.

2.2. Code growth

The problem of code growth is well reported in GP literature. It
is important to eliminate this tendency because code bloat not only
makes the process of evolution computationally expensive but also
reduces the understandability and generalization ability of evolved
classifiers (Poli et al., 2008).

Different interesting theories for the occurrence of code bloat
exist. An interesting reason presented by Langdon (Langdon & Poli,
1997) is that a solution can be represented by numerous counter
parts which are more in number, and this tends to increase tree size
having same fitness but more complexities (Soule & Heckendorn,
2002) states that existence of introns (inefficient code) in trees acts
as a mask and subtrees of any size can be inserted or deleted from
within this part with no effect on fitness. This gives larger trees
with introns, selective advantage over smaller trees, having no
introns. Another theory (Tackett, 1994) states that introns act as
hitchhikers and become attached to good building blocks and
become a part of subtrees exchanged during crossover. Luke
(2000) observed that the depth of a subtree is correlated to fitness.
If a node is altered in a tree, deeper node will have less effect on the
fitness of constituent tree. Therefore larger trees benefit from
selective advantage and become excessive in the population.

In literature we find many instances where researchers have
proposed various approaches and techniques to resolve the
sover in GP for classifier evolution. Computers in Human Behavior (2010),
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problem of code bloat. One of the ‘‘simplest and most frequently
used (Poli et al., 2008)’’ method is parsimony pressure. This meth-
od penalizes the size of trees during evolution; the fitness function
is a combination of actual fitness and its size. This pressure is usu-
ally kept fixed during the evolution but variable pressures have
also been proposed (Langdon, 2000). The major drawback of para-
metric methods like this is to find exact value of the parameter.

Other methods include changes in operators to avoid bloat dur-
ing evolution. We will discuss some variants of GP crossover oper-
ator proposed to avoid bloat or increase fitness during evolution.

2.3. Crossover variants in GP

Langdon (2000) presented an efficient method to avoid code
bloat ‘‘size fair crossover’’. A subtree is selected randomly from
one parent; the other subtree is selected based upon a bound
placed on amount of genetic change in one operation. The subtrees
bigger than 1 + 2* (subtree to be deleted) cannot be replaced by
first subtree. This method has proved effective in term of code
bloat and efficiency. But one has to make an exhaustive search of
all the subtrees present in the second parent in order to fulfill this
bound. In homologous crossover (Langdon, 2000), the method is
same except it deterministically chooses subtrees that are similar
in position to be replaced. Both methods were found efficient in
decreasing bloat without any detrimental effect on fitness.

Context aware crossover (Majeed & Ryan, 2007) attempts to
preserve context of the subtrees being swapped. It selects the sub-
trees by comparing and selecting most similar subtrees for cross-
over operation.

A fitness conscious crossover is presented by Tackett named
brood recombination crossover (Tackett, 1994). A brood ‘n’ is cre-
ated and the process of crossover between two parents is repeated
‘n’ times, i.e. 2n children are created and the best two are selected
to be injected into new population and all others are discarded.
This increases the evaluation of Genetic programs ‘n’ times. This
problem is tackled by using only a subset of data to evaluate fit-
ness. This attempts to eliminate the destructive effects of crossover
but makes no effort to reduce tree size and the only emphasis is fit-
ness of resulting trees.

A technique named depth dependent crossover was proposed in
(Ito, Iba, & Sato, 1998). A crossover point is selected based upon
depth selection probability. This is probability of selecting a certain
depth for crossover. And it is higher for a node closer to root; i.e.
selection of larger subtrees is favored. This method ‘‘protects build-
ing blocks and constructs larger building blocks easily by swapping
Fig. 1. DepthLimited c
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higher nodes frequently’’ (Ito et al., 1998). This method uses a user
defined parameter ‘depth probabilities’, in later work, this proba-
bility is adjusted using a self tuning mechanism. Both methods
make no effort to reduce tree complexities during evolution, as
they try to secure larger building blocks during evolution.

Next section presents the proposed crossover technique to
avoid bloat for classifier evolution.
3. DepthLimited crossover

In this paper we have proposed and shown the significance of
DepthLimited crossover for the problem of data classification. This
method avoids exponential increase in population size during evo-
lution, without compromising the performance of subsequent
trees. In the classification method used to evolve GP (Kishore
et al., 2000), one classifier is evolved for each class and output of
all classifiers is combined to get the final classification decision.
In case of binary classification only one classifier is evolved and
in case of more than two class classification, classifiers equal to
the number of classes in the data are evolved.
3.1. Initialization

Initialization plays an important role in success of any evolu-
tionary algorithm. A diverse and efficient initialization technique
can lead to effective search during the evolutionary process. We
have used the well known Ramped half and half method (Koza,
1992) for initialization of the population. The ramped half and half
method utilizes advantages of both full and grow initialization
schemes with equal probability for each depth level till the maxi-
mum allowed depth. This method has been widely used for initial-
ization in classification problems (Kishore et al., 2000).
3.2. Initial maximum depth

The initial maximum depth plays an important role in function-
ality of DepthLimited crossover. If the initial limits are not defined
wisely the algorithm may fail to attain genetic diversity and con-
verge. This problem becomes more important in the case of data
classification where each dataset has different characteristics. In
such a scenario it cannot be assumed that a single depth value will
be perfect for all the datasets. The classifier represents relation-
ships between attributes of data, it would be intuitive to define a
maximum depth that should include all the attributes present in
rossover operator.

sover in GP for classifier evolution. Computers in Human Behavior (2010),
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the data. Let Ad be the number of attributes present in the data
then such initial depth can be

depthp ¼ ceilðlog2ðAdÞÞ ð1Þ

where depthp is the maximum depth for initialization and ceil is a
function that rounds up the value to the highest integer. A full tree
of depthp depth can contain all the attributes of the data. For exam-
ple, consider a dataset with 23 attributes.

depthp ¼ ceilðlog2ð23ÞÞ ¼ 5 ð2Þ

A full tree with depth five has 32 leaf nodes. And such a tree can
contain all the twenty-three attributes present in the data under
consideration. As already mentioned, GP has the flexibility to mod-
el the underlying data, it can effectively eliminate the unnecessary
attributes performing the task of feature selection. On the other
hand one attribute can be used in more than one terminal node
if it is adds to the fitness or it is more important. Therefore depthp

has been used as maximum allowed depth for ramped half and half
initialization in our approach.

3.3. Operators and selection

Three operators, mutation, reproduction and crossover have
been used for evolution. The mutation operator used in our ap-
proach is point mutation where a random node is selected and re-
placed by a random counterpart. A function node is replaced by a
random function node and a terminal node is replaced by a random
terminal node (Muni et al., 2004). The GP tree for mutation is se-
lected randomly. The reproduction operator selects a tree based
on proportionate selection and copies that tree into next genera-
tion. During the evolution, once the crossover probability is met
the proposed DepthLimited crossover is performed. Two parents
are selected using tournament selection. The first subtree is ran-
domly selected from parent with smaller depth. This is to ensure
that the second subtree with same depth exists in the other parent.
The only restriction placed on the selection of second subtree is
that it should have same depth as the first subtree. The algorithm
is explained in algorithm DepthLimited crossover and illustrated in
Fig. 1.

Algorithm DepthLimited crossover

Step 1. Begin

Step 2. Select two parents P1, P2 through selection mechanism

Step 3. Calculate depths D1, D2 of both parents.

Step 4. If (D1 [D2)

a. Choose a random subtree S2 from P2

b. Calculate depth of subtree DS2

c. Choose a random subtree S1 from P1 such that DS1=DS2

d. Swap S1 and S2 to create two children C1 and C2

Step 5. Else

a. Choose a random subtree S1 from P1

b. Calculate depth of subtree DS1

c. Choose a random subtree S2 from P2 such that DS2=DS1

d. Swap S1 and S2 to create two children C1 and C2

Step 6. End if

Step 7. Return C1 and C2

Step 8. End
3.4. Fitness

The classifier is trained to output a positive response (accept)
for the class under consideration and negative response (reject)
for the instances belonging to the other class. The fitness measure
Please cite this article in press as: Jabeen, H., & Baig, A. R. DepthLimited cros
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used during the evolution is classification accuracy. The two lay-
ered fitness is used (Freitas, 1997; Muni et al., 2004). The classifier
with better accuracy is always preferred and if the accuracy of two
classifiers is equal, then, the one with fewer numbers of nodes is
selected. The fitness algorithm is explained in algorithm fitness.

Algorithm fitness

Step 1. Begin

Step 2. int countcorrect=0

Step 3. For all instances in the training data N

a. Evaluate the classifier expression using the attribute values from

the given instance (Value)

b. If Value=0 and class=desired class

i. countcorrect

c. if Value0 and class=not desired class

ii. count correct
d. End if

Step 4. End for

Step 5. Fitness=(countcorrect/N)*100

Step 6. End
3.5. Classifier evolution algorithm

The detailed description of the classifier evolution algorithm is
given in algorithm classification. This method has been proved effi-
cient for data classification and has been used by several research-
ers with little modifications (Muni et al., 2004; Smart & Zhang,
2005). The output of this phase is an expression that is trained to
differentiate between two classes by its response. It would output
zero or greater value for one class and negative value for the other
class.

Algorithm classification

Step 1. Begin

Step 2. For classes C=0 to N

a. Consider C and C’ as a binary classification problem,

Where C’=[0 to N]-C

b. Initialize trees using ramped half and half method using

allowed maximum depth.

c. Repeat (till maximum generations or maximum fitness

achieved)

i. Assign fitness to each tree.

ii. Perform evolutionary operators.

iii. Update best result

d. Output best classifier found so far

Step 3. End for

Step 4. Combine classifiers for all classes

Step 5. Check accuracy of combined classifiers using test data

Step 6. End

The DepthLimited crossover do not let search space expand beyond
predefined limits, and larger solutions do not get chance to over-
whelm the population. Therefore even if multiple solutions with
same fitness exist, they do not get a chance to monopolize the pop-
ulation. Larger trees can get selective advantage only if they are fit-
ter, but they will not be able to produce even larger trees. The depth
of children remain same as their parents.

This process of exchanging subtrees of same depth resembles
the traditional crossover operator in Genetic Algorithms where
sover in GP for classifier evolution. Computers in Human Behavior (2010),
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Table 3
Accuracies achieved using different initial depth limits in DepthLimited GP.
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fixed sized chunks are usually swapped to keep the structure of the
chromosome valid.
Max-depth BUPA (%) HABER (%) ION (%) MUSK (%) HRT (%)

Depthp�1 61.0 68.0 73.6 53.5 72.9
Depthp 63.6 73.6 88.5 69.3 73.3
Depthp+1 59.0 72.5 75.9 63.8 73.1
4. Results

We have used seventeen benchmark classification problems.
Sixteen problems are taken from UCI ML repository (Asuncion &
Newman, 2007). One of the dataset named Ripley’s data has been
taken from another source (Ripley).

The datasets have been chosen from various dimensions of life
to show the applicability of GP classification as well as robustness
of proposed technique. All the data used for classification is real/
integer valued except the BUPA dataset which has a categorical
attribute with numerical values. This attribute is treated as a
numerical attribute as done in Muni et al. (2004). Similarly Statlog
(HRT) dataset has few binary and nominal values which were trea-
ted as numeric values. In case of WBC data, there are some missing
values, which have been deleted. The datasets and their properties
are summarized in Table 1.

All the reported results have been averaged for 100 executions
where tenfold cross validation is applied on ten different partition-
ing of data twice.

The experimental parameters used for GP algorithm are pre-
sented in the Table 2. Depthp value for DepthLimited crossover
has been selected empirically as presented in Table 3.
Table 1
Datasets used for experiments.

Dataset Attributes Instances

WBC 10 699
BUPA 7 345
HABER 3 306
PARK 23 197
PIMA 8 786
TRANS 5 748
ION 34 351
SPEC 44 267
RIPR 3 1250
SONAR 60 208
MUSK 168 476
HRT 13 270
IRIS 3 150
WINE 12 178
VEHICLE 18 946
GLASS 10 214
YEAST 8 1484

Table 2
GP parameters for data classification.

GP parameters

Population size 600
Crossover rate 0.50
Mutation rate 0.25
Reproduction rate 0.25
Selection for cross over Tournament selection with size 7
Selection for mutation Random
Selection for reproduction Fitness proportionate selection
Mutation type Point mutation
Initialization method Ramped half and half method
Maximum depth Depthp for DepthLimited Eq. (1) and 6 for

GP with no depth limits
Function set +, �, * and/(protected division)
Terminals Data attributes A1, A2, . . ., An, ephemeral

constant [0,10]
Termination criteria User specified generations or 100%

training accuracy of classifier

Please cite this article in press as: Jabeen, H., & Baig, A. R. DepthLimited cros
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Initially defined depth plays an important role in searching for
desired solution, because we do not allow GP to search beyond
its initial limits.

Experiments are performed using five datasets having different
number of attributes and instances. As presented in Table 3, the
depthp initial depth has performed better making it a feasible ini-
tial maximum depth value.

We have used three measures to show effectiveness of the pro-
posed approach

� Classification accuracy
� Code complexity
� Classifier simplicity
4.1. Classification accuracy

Table 4 summarizes the testing and training accuracy obtained
after evolution of 120 GP generations with no bounds on tree sizes
using standard GP. It is clearly visible that DepthLimited crossover
has yielded compatible results as compared to the standard GP and
other GP based classification methods. This can also be noted that
number of average nodes of resulting classifiers is much smaller in
case of DepthLimited crossover. However larger initial maximum
Table 4
Comparison of DepthLimited GP with no depth limits.

Dataset GP without depth limitation DepthLimited crossover GP

Train (%) Test (%) Nodes Train (%) Test (%) Nodes

WBC 92.8 94.5 958 97.7 96.6 31
BUPA 69.3 68.0 3300 74.6 69.2 9.3
HABER 73.4 71.4 1075 78.1 72.5 6.5
PARK 85.6 82.6 3000 86.6 84.3 31.6
PIMA 67.8 66.4 1515 72.2 68.6 10.8
TRANS 74.3 73.8 4000 78.4 77.4 10.9
ION 86.3 85.4 1154 92.4 88.5 109
SPEC 76.0 83.4 5118 81.9 77.6 108
RIPER 88.6 88.3 946.5 89.8 89.1 6.5
SONAR 72.3 69.6 2303 79.0 73.3 110
MUSK 68.8 68.0 1482 74.3 69.3 127
HRT 79.1 72.3 1800 84.1 88.3 30.8
IRIS 99.2 93.50 1023 98.1 96.00 11.3
WINE 86.5 75.90 1987 82.2 78.50 10.2
VEHICLE 56.4 46.00 1765 68.4 49.10 18.3
GLASS 55.3 52.30 3897 64.9 54.70 13.6
YEAST 54.6 48.00 4532 65.5 57.00 20.4

Fig. 2. Increase in population complexity during evolution for GP with no limits.

sover in GP for classifier evolution. Computers in Human Behavior (2010),
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Table 5
Comparison of DepthLimited GP with other GP based approaches.

Datasets DepthLimited
crossover GP
(%)

Others

WBC 96.6 95.1% (Muni et al., 2004), 96.4% (Loveard &
Ciesielski, 2001), 93.92–97.54%, (Falco, Cioppa, &
Tarantino, 2002), 97.9% (Winkler, Affenzeller, &
Wagner, 2009), 98.2% (Zhang & Wong, 2008),
92.5–96.24% (Tsakonas, 2006)

BUPA 69.2 68.4% (Loveard & Ciesielski, 2001), 60.8% (Muni
et al., 2004)

PIMA 68.6 74.2% (Loveard & Ciesielski, 2001), 68.3–75.75%
(Tsakonas, 2006), 68.64–75.16% (Falco et al.,
2002), 74.87–75.53% (Winkler et al., 2009)

ION 88.5 85.4–90.52% (Pappa & Freitas, 2008)
SPEC 77.6 83.2 ± 7.3 (Zhang & Wong, 2008)
SONAR 73.3 68.4–72.42% (Pappa & Freitas, 2008)
HRT 88.3 71.4–79.66% (Tsakonas, 2006), 78.01–92.81%

(Falco et al., 2002), 74.2–77.9% (Pappa & Freitas,
2008)

VEHICLE 49.1 48.6% (Muni et al., 2004), 62.2% (Loveard &
Ciesielski, 2001)

IRIS 96.0 96.6% (Muni et al., 2004)
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depth may result in larger number of average nodes in initial
generations.

4.2. Code complexities

Fig. 2 and 3 show the average population size during GP evolu-
tion using standard GP with no limits and DepthLimited crossover.
Comparison of number of average nodes discloses a noticeable dif-
ference in average number of nodes. In case of traditional GP where
no restrictions have been placed on evolving population size the
complexity increases unlimitedly. The number of nodes per tree
has reached up to 5000 in the worst case. On the other hand, for
DepthLimited GP the average number of nodes cannot increase be-
yond the nodes present in initial maximum depth limit. The high-
est number of nodes can be noted in case of MUSK which has
highest number of attributes and larger maximum depth. This
shows that simple code can be evolved using DepthLimited cross-
over in GP.

4.3. Simplicity of classifiers

Fig. 4 compares the average number of nodes present in the
evolved classifiers. It is clear that the DepthLimited GP method
yields much simpler classifiers with compatible classification accu-
racies. Simpler expressions are desirable in the case of classifica-
tion because they have the ability to generalize the training data
instead of over fitting the data. Complex equations are usually con-
sidered to over-fit the training data and possess poor generaliza-
tion capability (Kotsiantis, 2007). Moreover simpler equations
require less computational power to generate the classification
result. In case of standard GP, the maximum number of nodes in
classifier trees reached up to 4500, whereas it never exceeded
Fig. 3. Increase in population complexity during evolution for DepthLimited GP.

Fig. 4. Average number of nodes in classifiers.

Please cite this article in press as: Jabeen, H., & Baig, A. R. DepthLimited cros
doi:10.1016/j.chb.2010.10.011
150 nodes per tree for the proposed DepthLimited GP method;
indicating improvement in terms of simplicity.

4.4. Comparison with other methods

In this section we compare the presented technique with other
GP based techniques present in the literature. GP requires very
long training times making it difficult to implement and experi-
ment all the techniques present in the literature. To overcome this
limitation we have implemented the proposed technique using
tenfold cross validation on ten different random shuffling of the
data increasing the rigorousness of proposed algorithm and keep-
ing it consistent with the experimentations performed in other
techniques. This has enabled us to compare our method with other
reported results as presented in the literature.

Table 5 shows that proposed DepthLimited crossover has
achieved compatible performance when compared to similar
techniques.

5. Conclusion

The DepthLimited crossover has proved efficient in term of les-
ser computation, simpler classifiers and compatible performance.
Yet it has a limitation of not being able to search beyond initially
defined limits. Therefore initial limits must be selected in a way
that GP can efficiently search in this predefined space with good
results. This phenomenon is obvious from the presented results.

Future works include testing the proposed technique over other
application areas of GP. A flexible method that can allow popula-
tion to extend beyond initial limits, by automatic detection of loss
of genetic diversity, can be used to overcome the limitations of pro-
posed method.
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