
Opposition Based Initialization in Particle Swarm
Optimization (O-PSO)

Hajira Jabeen
National University of Computer and

Emerging Sciences, Islamabad,
44000, Pakistan

hajira.jabeen@nu.edu.pk

Zunera Jalil
National University of Computer and

Emerging Sciences, Islamabad,
44000, Pakistan

zunera.jalil@nu.edu.pk

Abdul Rauf Baig
National University of Computer and

Emerging Sciences, Islamabad,
44000, Pakistan

rauf.baig@nu.edu.pk

ABSTRACT

Particle Swarm Optimization, a population based optimization
technique has been used in wide number of application areas to
solve optimization problems. This paper presents a new
algorithm for initialization of population in standard PSO
called Opposition based Particle Swarm Optimization (O-PSO).
The performance of proposed initialization algorithm is
compared with the existing PSO variants on several benchmark
functions and the experimental results reveal that O-PSO
outperforms existing approaches to a large extent.

General Terms
Algorithms, Performance, Experimentation.

Keywords
PSO, Opposition based learning, Swarm intelligence,
Optimization.

1. INTRODUCTION
The Particle Swarm Optimization (PSO) is a population-based
optimization method first proposed by Kennedy and Eberhart
[1]. The algorithm simulates the behavior of bird flock flying
together in n-dimensional space in search of some optimum
place, adjusting their movements and distances in the
constrained environment.

PSO can be viewed as a mid-level form of artificial and natural
life which has proved to be successful on a wide range of real
life problems like function optimization [2], pattern recognition
[3], learning game environments [4] and others. PSO is easy to
implement and does not require any problem specific
information like gradient. It can be applied for the tasks where
problem specific information is either unavailable or
computationally expensive to obtain. In PSO, each particle
represents a potential solution to an optimization problem. The
concept of particle swarm optimization is optimizing these
potential solutions by flying (moving) through the search
hyperspace, accelerating towards "better" solutions.

Initialization of population plays an important role in any
optimization algorithm. It has been proven [5] that the random

selection of solutions from a given solution space can result in
exploiting the fruitless areas of the search space. Intelligent
initialization methods based on realistic approaches are
required for efficient results. It has been shown empirically [5]
that random selection in case of using opposite population
lowers the chances of exploring barren areas of search space. In
this paper, the opposition based initialization technique has
been proposed in which opposites or opponents of basic
population are included in the initial population, and the
potential ones survive.

This paper is organized as follows. We first introduce the
Particle Swarm Optimization problem, the issues of
initialization and performance. In the next section, the existing
variants of PSO and opposition based learning (OBL) are
briefly mentioned. In section 3, Opposition based PSO
algorithm (O-PSO) has been proposed with description of
initialization approach. Section 4 gives the simulation results
and the final section concludes the paper highlighting the
directions for future research.

2. LITERATURE REVIEW
A swarm in PSO contains multiple particles, where each
particle maintains certain characteristics. One of the
characteristic is a particle’s current position which is
represented by an n-dimensional vector corresponding to a
potential solution of the function to be optimized. Each particle
preserves an n-dimensional vector representing velocity which
keeps track of the movement speed and direction. Another
vector representing best position of particle is also reserved.
Besides above mentioned vectors, each particle keeps its
current fitness, which is obtained by evaluating the fitness
function for each particle for its current position [6].

In past, considerable research has been done for optimization
and efficient working of PSO. Several parameters have been
introduced to improve the performance of PSO. Two important
parameters are constriction coefficients and inertia weight.
Constriction coefficients set the proportion to which we admire
the previous best position of a particle and the global best
particle of the swarm during the movement of one particular
particle. The inertia weight determines the step size for
movement.

Shi and Eberhart [7] introduced the concept of linearly
decreasing inertia weight. A fuzzy method to change the inertia
weight nonlinearly is proposed in [8]. In [9] the value of inertia
weight is set at zero, except at the time of re-initialization. By

Copyright is held by the author/owner(s).
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
ACM 978-1-60558-505-5/09/07.

analyzing the convergence behavior of the PSO, a PSO variant
with a constriction factor is introduced by Clerc and Kennedy
[10]. Constriction factor guarantees the convergence and
improves the exploration ability of swarm. Optimal values of
constriction coefficients and inertia weights are proposed by
Clerc [11] are 0.7298 and C0=C1=1.49618.

To improve the performance of PSO, another research focus has
been variations in PSO topology. Keneddy [12] proposed that
PSO with smaller neighborhood performs better on complex
problems and larger neighborhood would perform better on
simpler problems. Suganthan [13] suggests dynamic
neighborhood that increases until it includes all the particles of
the swarm.

Parsopoulos and Vrahatis used a combination of the global
version and local version to make a unified particle swarm
optimizer (UPSO) [14]. Mendes and Kennedy introduce a fully
informed PSO [15], in which all the neighbors of the particle
are used to update the velocity. The influence of each particle
on its neighbors is weighted based on its fitness value and the
neighborhood size. Some researchers have also used hybrid
models of PSO [16].

The idea of opposition based learning is proposed by Tizoshi
[17] which has been incorporated in several machine learning
algorithms like opposition based reinforcement learning [18],
opposition based differential evolution [5]and opposition based
genetic algorithm [19]. Opposition based differential evolution
[20] uses opposition based initialization scheme in which
opposites of initial population are created and best from the
combined population are chosen for evolution. The actual
process of differential evolution is augmented by the opposition
phase. It has been proved that opposition based learning
process increases the convergence speed thus the evolution
process accelerates.

Another method of opposition based differential evolution with
jumping phenomena was proposed in [21] where a jumping rate
was introduced and the individuals in a population were
allowed to jump towards its opposite, once the jumping
probability was met.

A method incorporating opposition based learning in PSO has
been proposed by Wang [22]. The method uses opposition
based learning and dynamic cauchy based mutation to avoid
premature convergence in standard PSO.

The emphasis of our paper is to study the affect of opposition
based initialization of swarm particles in standard PSO
algorithm. The algorithm is elucidated in the next section.

3. PROPOSED ALGORITHM
Extensive and continuous effort has been done for optimization
of PSO algorithm to make it efficient in solving various types of
problems. It has been observed that the initialization of
population plays an important role in the search process of
evolutionary as well as swarm based algorithms. Better
initialization tends to search efficiently through the hyperspace
of desired solution and in case of bad initialization; algorithms

may search in unwanted areas and may fail to converge.
Initialization of population is very important for all
optimization problems; however no significant research has
been made in this area. We propose a new technique for
initialization of population in Particle Swarm Optimization
algorithm.

3.1 Opposition-based Initialization
In PSO, the swarm should truly represent the entire search
space so that solution found from that swarm is optimal. Better
and careful initialization based on priori information can lead
to better results.
The social phenomenon of good and bad says, if one person is
good then his/her opponent is bad. It rarely occurs that two
opponents are totally good and totally bad at the same time.
This is purely natural and in this paper we exploit this natural
trait of human beings and propose a similar method for
population initialization of PSO. The proposed approach to
population initialization used the opposition based method in
which the population and its opposite population is taken as
input. The fitness of both populations are evaluated and only
the fitter ones from both are selected as particles. The
description of concepts used in the proposed algorithm is as
under:
Particle: A swarm particle Pi in PSO can be defined as:
 Pi є [a, b] ; where i=1,2,3,…..,D, and a,b є R
D represents dimensions and R represents real numbers
Opposite particle: Every particle Pi has a unique opposite Popi
in initially defined hyperspace which can be defined as:
 Popi = a+ b- Pi ; where i=1,2,3,…,D and a,b є R (i)
D represents the number of dimensions and R represents real
numbers. For a single dimensional particle, Pi =3 є [0, 10]; the
opposite will be calculated as Popi = (0+10)-3= 7.
Fitness Function: is the function which quantifies the
optimality of a solution and is usually the objective function.
Each particle in the swarm maintains three attributes of D
dimensions. These are i) current position ii) local best position
and iii) velocity
Local best (l-best): is the best position that a particle has
visited yielding the highest fitness value for that particle. This
value can be smallest for a minimization task.
Global best (g-best): is the position where the best fitness is
achieved by any particle of the swarm evolved so far.
Velocity Update: Velocity is a D-dimensional vector that
determines the movement speed and direction of the particle.
The velocity is updated by the following equation:

igbestilbestii XXrandCXXrandCVV)1,0()1,0(101 (ii)

Where w is the inertia weight, C0 and C1 are the constriction
coefficients, xlbest and xgbest are the local and global bests of the
particle.
Position Update: Each particle (potential solution) updates its
position to move in the solutions hyperspace in search of
optimal solution. All the particles in a swarm move
stochastically for optimal positions and update their positions
using the following equation:

iii VXX 1 (iii)

Figure 1. PSO with (a) Random population initialization and (b) Opposition-based population initialization

3.2 The O-PSO Algorithm
The following opposition-based population initialization
algorithm can be used for population initialization instead of
random initialization:

In the above algorithm, the initial basic population of swarms is
initialized randomly. Then the basic swarm is used to create its
opposite swarm. Fitness of each individual solution (particle)
is evaluated and the fitter ones from both are selected to find
the optimal solution using standard PSO algorithm. The
algorithm is terminated when the desired solution is found or
iterations have been completed. Figure 1 shows the proposed
approach of initialization. The standard PSO gets improved by
doing initialization of population based on opposite numbers.
The position and velocity components are updated using
standard PSO formulas [11].

4. EXPERIMENTAL RESULTS
4.1 Benchmark functions
In order to test the performance of opposition-based particle
swarm optimization algorithm, a test set with four non-linear
functions is used. The first three functions (f1, f2, and f3) are
frequently used as benchmarks in swarm intelligence literature
[2], while f4 is commonly used as benchmarks for evolutionary
algorithms. These functions are listed in Table 1.

In Table 1, Variable x is a real valued n-dimensional point and
xi is the ith element of that point.f1 is a simple unimodal
function called generalized sphere function. f2 is a unimodal
function known as hard to optimize and is called Rosenbrock
function. f3 is a multimodal function with many local minima
set around global minima and is named generalized Ackley
function. f4 is a multimodal function hard to optimize. All these
functions can work with variable number of dimensions of the
variable x. These functions present minimization problems with
global minima set at 0 values for each dimension.

Two experiment setups were made to test the performance of
O-PSO with the existing PSO variants and to evaluate the
effect of incorporating opposition in PSO compared to standard
PSO initialization method.

4.2 Experimental Setup I
To evaluate the performance of O-PSO, it has been compared
with existing PSO variants PSO1, PSO2 and PPO (Predator-
Prey Optimizer). The detailed descriptions of these algorithms
can be found in [2]. We have used the results presented by
Silva for comparison.

The algorithm was run with three different dimensions 10, 20
and 30 for each test function. The maximum iteration limit was
set to 1000, 1500 and 2000 for 10, 20 and 30 dimensions
respectively.

Table 1. List of benchmark functions used for experiments

f1 Sphere Function

n

i
ixxF

1

2
1)(

f2 Rosenbrock Function))1()(100()(222
1

1
12

 ii

n

i
i xxxxF

f3 Ackley Function ex
n

x
n

xF
n

i
i

n

i
i

20)2cos(1exp12.0exp20)(
11

2
3

f4 A MultiModal Function

n

i
ii xxnxF

1
4)sin(9829.418)(

Table 2. Average best solutions of each experimental setting over 200 runs

Functio
n Dim Iterations PSO1 PSO2 PPO O-PSO

f1

10 1000 115E-20 5831E-21 521E-3 102090E-73 143E-34 1227E-34 2.15E-85 7.74296E-85

20 1500 500E-12 228482E-12 212E-41 31323E-42 990E-26 10389E-26 2.39E-131 1.92E-131

30 2000 413E-08 130741E-08 622E-25 10182E-25 532E-21 37682E-21 5.2E-173 103E-32

f2

10 1000 11883096 3402262 5114766 16443999 73008 1355563 21.6 9.8

20 1500 18502141 4349773 6889530 1755632 6746585 1497499 68.81189 22.68682

30 2000 24134265 5265796 15513395 3523946 16397916 3766825 99.66251218 26.5075264

f3

10 1000 2564E-11 60335E-12 006941 004307 7832E-08 12394E-08 1.81541816E-05 1.2E-05

20 1500 000823 001613 047375 009981 184E-06 268697E-07 1.81541816E-05 3.2E-05

30 2000 021048 007028 108448 014345 1252E-5 171359E-06 1.81715406E-05 3.4E-05

f4

10 1000 41113915 2370806 68912034 3168839 9373165 1381862 370327.6618 968197.2302

20 1500 120235393 4789437 199120137 6202794 38048637 2546739 40424720.7 1554872

30 2000 230519333 6872059 342618449 7736661 72470529 3799708 6644981.6 13531597

For all conducted experiments, the parameters inertia weight
(w), constriction coefficients (C0 and C1) are set to 0.7298,
1.49618 and 1.49618 respectively. These values were derived
from Clerc’s analysis [9].

The population of size 20 has been used. Other experimental
parameters were kept same as in [2] to facilitate the
comparison. All results have been averaged over 200 runs to be
consistent for comparison purpose.

Table 2 shows the experimental results of O-PSO in
comparison with PSO1, PSO2 and PPO. The O-PSO algorithm
provides better results and shows the effectiveness of the
proposed initialization technique. It can be clearly observed
that O-PSO performs better than PSO1 and PSO2 on all
functions. Also, O-PSO gives better results than PPO on all

benchmark functions except f3. PSO1 performed better than
other variants for f3.
 All the PSO variants failed to converge to the optimal values
for f4. The optimal values achieved by O-PSO are much better
than all three versions of PSO.
4.3 Experimental Setup II
Besides comparing the performance of O-PSO with other
variations of PSO, we also tested the performance of O-PSO
with standard PSO (using random initialization approach).

Instead of including N opposite particles, we included N
random particles, resulting in a random population of size 2N.
We selected best N particles from this population for

optimization and refer this approach as 2-PSO in experiments.
The experimental parameters are motioned in Table 3.

Table 3. Parameter values

Parameters Values

Population size 20

Error Tolerance 0.0001

Iterations 10000

Search space [-100,100]

Dimensions 1000

We performed the experiments on three functions (f1, f2 and
f3) only since all PSO variants fail to achieve the error
tolerance for f4. Table 4 shows the number of iterations taken
by O-PSO and 2-PSO to achieve the error tolerance mentioned
in Table 3. The results have been averaged over 200 runs.

Table 4. Number of iterations taken by O-PSO and 2-PSO
to achieve error tolerance

Function O-PSO 2-PSO

F1 75.35 78.73

F2 72.3 76.15

F3 129.2 132.4

The results show that O-PSO reached the error tolerance in
lesser number of iterations on all the functions as compared to
2-PSO. This proves that the population and anti-population has
a positive effect on the convergence of PSO.

Average fitness

0

50000

100000

150000

200000

250000

300000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99
Iterations

Fi
tn

es
s

2-PSO
O-PSO

Figure 2. Average fitness of O-PSO and 2-PSO during
convergence

Figure 2 shows the convergence properties of O-PSO as
compared with 2-PSO. O-PSO not only starts from a better
value but also converges faster to the optimal values as
compared to 2-PSO.

5. CONCLUSIONS
This paper introduces a new initialization technique for
initialization of population in particle swarm optimization
algorithm. The initialized population considering opposites

gives a better representation of search space and the solutions
found are better as compared with standard PSO. Future work
scenarios include considering PSO with different parameter
variants with opposition based initialization and different
fitness functions. Much more work need to be done to mimic
the other behaviors of birds besides flocking e.g some birds
may have more hunger rate and move faster than others.
Another direction can be to incorporate opposite particles in
dynamic environments.

6. REFERENCES
[1] J. Kennedy and R. C. Eberhart. Particle Swarm

Optimization. In Proceedings of IEEE International
Conference on Neural Networks, volume IV, pages 1942-
1948, Perth, Australia, IEEE Service Center, Piscataway,
NJ, 1995.

[2] A, Silva, A. Neves and E.Costa. Chasing The Swarm: A
Predator Pray Approach to Function Optimization. In
Proceedings of MENDEL 2002, 8th International
Conference on Soft Computing , Brno, Czech Republic.
2002.

[3] Mahamed G. H. Omran, Particle Swarm Optimization
Methods for Pattern Recognition and Image Processing,
PhD Thesis, University of Pretoria, Pretoria, November
2004.

[4] M,Leon and A.P.Engelbrecht, Learning To Play Games
Using a PSO Based Competitive Learning Approach,
IEEE Transactions On Evolutionary Computation. Vol 8,
No 3, June 2004.

[5] Shahryar Rahnamayan, Hamid R. Tizhoosh, and Magdy
M. A. Salama. Opposition-based Differential Evolution.
IEEE Transactions on Evolutionary Computation, 2007

[6] F. van den Bergh, and A.P.Engelbrecht, A Cooperative
Approach to Particle Swarm Optimization, IEEE
Transaction On Evolutionary Computation ,Vol 8, No 3,
June 2004.

[7] Y. Shi and R. C. Eberhart. A Modified Particle Swarm
Optimizer. In Proceedings of the IEEE Congress of
Evolutionary Computation, 1998, 69–73.

[8] Y. Shi and R. C. Eberhart. Particle Swarm Optimization
with Fuzzy Adaptive Inertia Weight. In Proceedings
Workshop Particle Swarm Optimization, Indianapolis, IN,
2001.

[9] A. Ratnaweera, S. Halgamuge, and H. Watson. Self-
Organizing Hierarchical Particle Swarm Optimizer with
Time Varying Accelerating Coefficients. IEEE
Transactions on Evolutionary Computation, vol. 8, Jun.
2004, 240–255.

[10] Clerc, M., and Kennedy, J. The Particle Swarm Explosion,
Stability, and Convergence In A Multidimensional
Complex Space. IEEE Transaction on Evolutionary
Computation, 6(1), 2002, 58–73.

[11] Riccardo Poli, James Kennedy and Tim Blackwell,
Particle Swarm Optimization An Overview, Swarm
Intelligence, 2007, 33-57.

[12] J. Kennedy. Effects of Neighborhood Topology on Particle
Swarm Performance. In Proceedings of Congress in
Evolutionary Computation 1999, 1931–1938.

[13] P. N. Suganthan. Particle Swarm Optimizer with
Neighborhood Operator. In Proceedings of Congress
Evolutionary Computation, Washington, DC, 1999, 1958-
1962.

[14] K. E. Parsopoulos and M. N. Vrahatis,. UPSO: A Unified
Particle Swarm Optimization Scheme. In Lecture Series on
Computational Sciences, 2004,868–873.

[15] R. Mendes, J. Kennedy, and J. Neves .The Fully Informed
Particle Swarm: Simpler, Maybe Better. IEEE
Transactions on Evolutionary Computation, vol. 8, Jun.
2004, 204–210.

[16] Lovbjerg, M., Rasmussen, T. K. and Krink, T. Hybrid
Particle Swarm Optimiser with Breeding and
Subpopulations, Proceedings of the third Genetic and
Evolutionary Computation Conference (GECCO-2001).
2001.

[17] H.R.Tizhoosh. Opposition-Based Learning: A New
Scheme for Machine Intelligence. Proceedings of
International Conference on Computational Intelligence

for Modeling Control and Automation -MCA'2005,
Vienna, Austria, vol. I, 2005, 695-701.

[18] Hamid R. Tizhoosh, Opposition-Based Reinforcement
Learning, Journal of Advanced Computational
Intelligence and Intelligent Informatics, Vol.10, No.4 pp.
578-585

[19] A.Iqbal, H.Jabeen, R.Baig, Opposition Based Genetic
Algorithm with Jumping Phenomena, The Second
International Symposium on Intelligent Informatics, ISII
2009,(submitted)

[20] S.Rahnamayan, H.R.Tizhoosh, M.M. Salama,
“Opposition-Based Differential Evolution Algorithms”,
IEEE Congress on Evolutionary Computation, 2006

[21] S. Rahnamayan, H.R. Tizhoosh, M.M.A.
Salama,“Opposition-Based Differential Evolution (ODE)
with Variable Jumping Rate,” Proceedings of the 2007
IEEE Symposium on Foundations of Computational
Intelligence (FOCI 2007)

[22] H. Wang and Y. Liu, Opposition-based Particle Swarm
Algorithm with Cauchy Mutation, IEEE Congress on
Evolutionary Computation, CEC, 2007.

particles
P(N)
randomly; N
is the

