
DistSim - Scalable Distributed in-Memory Semantic
Similarity Estimation for RDF Knowledge Graphs

Carsten Felix Draschner
carsten.draschner@uni-bonn.de

University of Bonn
Bonn, Germany

Jens Lehmann
jens.lehmannn@cs.uni-bonn.de

University of Bonn
Bonn, Germany

Hajira Jabeen
hajira.jabeen@uni-koeln.de

University of Cologne
Cologne, Germany

Abstract— In this paper, we present DistSim, a Scalable Dis-
tributed in-Memory Semantic Similarity Estimation framework
for Knowledge Graphs. DistSim provides a multitude of state-of-
the-art similarity estimators. We have developed the Similarity
Estimation Pipeline by combining generic software modules. For
large scale RDF data, DistSim proposes MinHash with locality
sensitivity hashing to achieve better scalability over all-pair
similarity estimations. The modules of DistSim can be set up using
a multitude of (hyper)-parameters allowing to adjust the trade-
off between information taken into account, and processing time.
Furthermore, the output of the Similarity Estimation Pipeline
is native RDF. DistSim is integrated into the SANSA stack,
documented in scala-docs, and covered by unit tests. Additionally,
the variables and provided methods follow the Apache Spark
MLlib name-space conventions. The performance of DistSim was
tested over a distributed cluster, for the dimensions of data set
size and processing power versus processing time, which shows
the scalability of DistSim w.r.t. increasing data set sizes and
processing power. DistSim is already in use for solving several
RDF data analytics related use cases. Additionally, DistSim is
available and integrated into the open-source GitHub project
SANSA.

I. INTRODUCTION

Various information domains are modeled using knowledge
graphs. A popular standardized format to encode knowledge
graphs as linked data is RDF. For optimizing available RDF
data, we perform algorithms like Entity Resolution, Entity
Linking, and Classification. Additionally, methods are needed
to gain insights into the data and to find relevant entities for
advanced analytics like Recommendation Systems, Clustering,
and Anomaly Detection. The commonality in all of these
methods is that they rely on computing similarities or distances
between entities. RDF data can have arbitrary sizes up to
billions of triples and gigabytes of volume1. This large scale
data indicates the need for distributed computing because it is
cheaper and sometimes more convenient to scale horizontally
rather than vertically.Processing large scale data can lead to ex-
tensive processing times, especially when the algorithms have
non-linear complexity. For some of the non-linear complexity
algorithms, there are probabilistic alternatives that reduce the
complexity [1]. This reduction in complexity offers a trade-
off between run time and result quality. However, whether a
reduction in quality is acceptable depends on the use case.
Therefore, it is desired to develop algorithms by providing an

1https://www.w3.org/wiki/DataSetRDFDumps

appropriate trade-off between processing time and quality of
results. The contributions of this work are:

• A scalable Distributed in-Memory Semantic Similarity
Estimation Framework for RDF Knowledge Graphs

• Integration of DistSim into the holistic SANSA stack over
a set of generic modules

• Representation of Semantic Similarity Estimation Exper-
iments and their results in native RDF format

• Evaluation of scalability of different distributed similarity
estimation approaches

II. PRELIMINARIES

A. Resource Description Framework

RDF is the W3C standard to represent semantic linked data.
RDF data is, in principle build-up by triples. Each Triple has
a Subject, a Predicate, and an Object. The elements can be
IRI, Blank Node, or Literals. Subjects can be IRI or Blank
Node, Predicates are IRI and Objects can be IRI or Literal.
IRIs are ”Internationalized Resource Identifier”. Blank nodes
are nodes in the Knowledge Graph without explicit given IRI.
Literals are leaves in an RDF graph and represent explicit
values like Strings, Integers or date-time information.

B. Apache Spark

Apache Spark is a framework for cluster computing, avail-
able in scala, python, and java. The building block components
of Apache Spark are Spark SQL, Spark Streaming, MLlib, and
GraphX. Large scale data sets can be processed in memory
when a sufficient cluster hardware setup is available. Apache
Spark MLlib is Spark’s scalable machine learning library con-
sisting of standard learning algorithms and utilities, including
feature transformation, clustering, hashing, and classification.

C. SANSA

The open-source SANSA stack[2] uses Apache Spark and
Apache Flink, which offer fault-tolerant, highly available,
and scalable approaches to efficiently process massive sized
data sets. SANSA provides various layers containing modules
for semantic data representation, querying, inference, and
analytics. The SANSA stack is available over GitHub.

III. RELATED WORK

A. Developments of Semantic Similarity Estimations

In recent years, many different semantic similarity esti-
mators have been developed for various use cases[3], [4].
Three types of Semantic Similarity Estimation have been
proposed[5], [6]. Structure/Path-based semantic similarity es-
timations assign the similarity over two entities’ distance in
a knowledge graph. The smaller the distance is, the higher is
the similarity (Shortest Path[7], Weighted Links[8], Wu and
Palmer[9]). These and further approaches differ in how the
knowledge graph structure path is deduced and weighted for
the resulting similarity value. The second class of semantic
similarity estimations is based on Information Content (Resnik
et al.[10], Lin et al.[11]). These approaches assign the simi-
larity by the highest information content of shared features.
The information content is calculated based on inverse feature
frequency. The rarer a feature is, the higher is its Information
Content. The third group is feature-based semantic similarity
measures. The feature-based methods differ in the normaliza-
tion of the calculated overlap of features. The initial approach
is Jaccard Index[12]. Jaccard defines the similarity as the
cardinality of the intersection of features divided by the cardi-
nality of the union of features. Based on these feature-based
semantic similarity measures, probabilistic approaches like
minHash[13] were developed. MinHash reduces the processing
time in computing all pair similarity by representing the sparse
hot encoded feature vector in a dense minHashed vector. Based
on these min-hashed vectors, elements are grouped in buckets
over Locality Sensitivity Hashing. This bucketing results in
a much smaller search space for each entity to calculate
similarity values.

B. Distributed Semantic Similarity Estimation Frameworks

In recent years frameworks were developed for semantic
analytics like similarity estimation [14], [4], [3], but these
developments are not optimized for large data, and scalability
over distributed computing. Apache Spark is the state of
the art, open Source Framework for distributed data analyt-
ics. Spark MLlib provides two similarity estimation modules
(Bucketed Random Projection for Euclidean Distance and
MinHash[15] for Jaccard Distance. Apache Spark does not
incorporate RDF data out of the box. On the other hand,
Knowledge Graph and RDF do not have native feature set
vectors, such that they can be used out of the box.

IV. DISTSIM

A. Pipeline Architecture

The Scalable Distributed in-Memory Semantic Similarity
Estimation is implemented as a stacked pipeline aligned with
the standards of Apache Spark MLlib. Figure 1 shows that the
approach consists of six modules: ReadIn, Feature Extraction,
Count Vectorization, Similarity Estimation, Metagraph Cre-
ation, and WriteOut. DistSim makes use of ReadIn and Write-
Out software modules from the SANSA stack RDF Layer to
read and write RDF data. For scalable similarity estimation, it

Fig. 1. DistSim Pipeline Architecture)

Fig. 2. Sample resulting meta graph from DistSim

uses Count Vectorizer and MinHash with Locality Sensitivity
Hashing from Apache Spark MLlib. In addition, DistSim
provides feature extraction, a set of similarity estimation
models, and the meta graph creation as novel contributions.
The pipeline for semantic similarity estimation reads-in and
writes-out RDF data.

B. DistSim as Resource

DistSim is developed as open source and is fully integrated
into the SANSA-Stack and documented with scala-docs. The
estimators provide methods for nearestNeighbors which esti-
mates for one URI the k most similar elements represented
by their URI. Alternatively, allPairSimilarity calculates the
similarity of all pairs of URIs from the two DataFrames
(of length n and m). DistSim provides the output RDF data
enriched with similarity annotations and meta-information (see
figure 2). The annotated meta information of the similarity
estimation not only makes the results reproducible, but it
also allows the possibility to comprehend the conditions and
parameters used for the estimation. For every novel developed
module, we provide unit tests.

C. DistSim Feature Extraction

The Semantic Similarity Estimations of DistSim operate on
feature sets. These feature sets are derived from the reading
the RDF data set using the Feature-Extractor Module, which is
implemented as a Transformer. Developers can set the Feature-
Extractor methodology using modes. The mode specifies how
the information stored in triples for a specific URI is trans-
formed into the assigned feature set. In this paper, we present
two out of twelve available feature extraction modes, supplied
as a parameter in Feature Extractor Transformer initialization.
The corresponding figures 3, 4 show on the left-hand side the
sample KG. with the entities in blue, the used triple informa-
tion for features in green, and the ignored information in red.
On the right-hand side, the corresponding schematic feature

Fig. 3. Feature Extraction using predicate and node in same feature

Fig. 4. Feature Extraction using predicate and node in separate feature

vector representation of the entity is shown. In the feature
extraction approach shown in figure 3 the information of the
property and connected node are kept together for feature
generation compared to the stacking approach presented in
figure 4

D. Semantic Similarity Estimation Models

DistSim provides feature set based semantic similar-
ity estimations (see table I). The scalable alternative
MinHashLSH[15], [13] can be used for the probabilistic ap-
proach in calculating Jaccard[12] similarity. This scalable but
approximate method is optimal for large scale data scenarios.
In addition, we can stack MinHash with different DistSim
models, such that we calculate a set of first estimates in
scalable processing time and call in a second step more
accurate functions only on promising candidates.

TABLE I
FEATURE SET BASED SEMANTIC SIMILARITY ESTIMATION FORMULAS

Similarity Coefficient Formula

Batet[16] Distance log2
(
1 +

|X−Y |+|Y−X|
|X∩Y |+|X−Y |+|Y−X|

)
Braun-Blanquet[17] Similarity |X∩Y |

max{|X|,|Y |}
Dice[18] Similarity 2|X∩Y |

|X|+|Y |
Jaccard[12] Similarity |X∩Y |

|X∪Y |
Ochiai[19] Similarity |X∩Y |√

|X|∗|Y |

Simpson[20] Similarity |X∩Y |
min{|X|,|Y |}

Tversky[21] Similarity |X∩Y |
|X∩Y |+α|X−Y |+β|Y−X|

E. DistSim (Hyper-)Parameter Setup

The modular DistSim Pipeline allows a multitude of adjust-
ments over (hyper-)parameters that can reduce the memory
usage and the processing time. The trade-off comes with a
loss of information. The CountVectorizer transforms a set
of features into a vector with a fixed length. The length
is adjustable by minimal document frequency (minDf) and
upper bound vector size (maxVocabSize). Small feature vectors
need less memory and can be processed faster but store
less information. In Semantic Similarity Estimation over Min-
HashLSH, a higher number of hash tables (numHashTables)
reduce the false-negative rate in detecting similar elements
but increase the processing time and memory usage. The
threshold on minimal similarity, respectively, minimal distance
can minimize memory usage and processing time. If this
threshold is more strict, fewer pairs of similar values have
to be processed over a distributed system in allPairSimilarity.

F. DistSim Use Cases

Scalable distributed semantic similarity estimations are
needed in several Use Cases. The extended SANSA stack
is in use as a generic Big Data Analytics Toolbox of the
Horizon 2020 Project PLATOON. SANSA, as an underlying
toolbox for semantic analytics in Opertus Mundi2, provides
with the novel developed semantic Similarity Pipeline needed
software modules. The project Simple-ML3 provides an easy
to use generic stackable machine learning framework which
uses SANSA and DistSim as underlying Semantic Similarity
Framework for RDF data.

V. EXPERIMENT AND EVALUATION

DistSim implements well-established similarity estimation
functions for RDF data. The evaluation is presented for the
performance assessment of DistSim on different data sizes and
varying cluster processing setups. Here, the processing time is
an indicator of DistSim’s distributed processing and scalability.
The cluster processing power is adjusted over the spark-submit
command, where the number of executor cores can be limited.

A. Data Sets

The evaluation of the scalability of DistSim is performed
over multiple data sets of different sizes. The data set sizes
are adjusted by creating synthetic data sets We use synthetic
data sets to ensure equally distributed graph density. In real-
world graphs, cutting off fractions could lead to an unnatural
graph appearance. Figure 4 shows on the left hand side the
principle structure of the generated data set.

B. Scalability over increasing horizontal Cluster Computation

The processing power is regulated over the number of
available cores (from 22 = 4 up to 27 = 128). Table II shows
the scalability over cluster setups. We see a clear decrease in
processing time over increasing computation power.

2https://www.opertusmundi.eu
3https://simple-ml.de

TABLE II
DISTSIM PROCESSING POWER SCALABILITY

Processing Time in seconds Number Executer Cores
Estimation Approach 4 8 16 32 64 128
Jaccard 274 196 133 87 44 31
MinHash 33 31 22 15 10 10

Fig. 5. Data Size Scalability of All-Pair-Similarity Estimation

C. Scalability over Data Set Size

The use of probabilistic similarity estimator MinHashLSH
allows scalable processing of large scale RDF data. Figure 5
shows for the all pair similarity estimation that MinHash (or-
ange) scales better than the other approaches. The approaches
Batet, Braun Blanquet, Dice, Jaccard, Simpson, and Tversky
scale similar. For Nearest Neighbor Estimation, all approaches
are on a similar scalable level, including MinHash, because
Nearest Neighbor is a linear operation and not quadratic in
complexity like All-Pair Similarity.

VI. CONCLUSION AND FUTURE WORK

DistSim integrated into the SANSA stack provides a scal-
able distributed open-source framework for semantic similarity
estimation on RDF Knowledge Graphs. Multiple projects are
already using DistSim modules. The community is actively
using the SANSA stack for scalable distributed semantic
analytics on large-scale RDF data. The availability of an easy
to use evaluation pipeline shows clear infer-able effects of
(hyper-)parameters to the corresponding processing times. The
storage in a tabular format and semantic data representation
(see figure 2) allows high reproducibility and understanding of
the needed pipeline setup. The results are human and machine-
readable. Using DistSim and the proposed analytic pipeline
modules for RDF processing, additional RDF data analytic
algorithms can be easily ported to distributed processing. The
evaluation shows scalability of DistSim over different data
set sizes and processing power. We are currently developing
more approaches for feature extraction and semantic similarity
estimations to cover additional semantic information.

ACKNOWLEDGEMENT

This work was partly supported by the EU Horizon 2020
project PLATOON (Grant agreement ID: 872592).

REFERENCES

[1] A. Gakhov, Probabilistic Data Structures and Algorithms for Big Data
Applications. BoD–Books on Demand, 2019.

[2] J. Lehmann, G. Sejdiu, L. Bühmann, P. Westphal, C. Stadler, I. Er-
milov, S. Bin, N. Chakraborty, M. Saleem, A. C. Ngonga Ngomo, and
H. Jabeen, “Distributed semantic analytics using the SANSA stack,”
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10588
LNCS, no. iii, pp. 147–155, 2017.

[3] S. Harispe, S. Ranwez, S. Janaqi, and J. Montmain, “Semantic similarity
from natural language and ontology analysis,” Synthesis Lectures on
Human Language Technologies, vol. 8, no. 1, pp. 1–254, 2015.

[4] G. Zhu and C. A. Iglesias, “Computing semantic similarity of concepts
in knowledge graphs,” IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 1, pp. 72–85, 2016.

[5] D. Sánchez, M. Batet, D. Isern, and A. Valls, “Ontology-based semantic
similarity: A new feature-based approach,” Expert systems with appli-
cations, vol. 39, no. 9, pp. 7718–7728, 2012.

[6] T. Slimani, “Description and evaluation of semantic similarity measures
approaches,” arXiv preprint arXiv:1310.8059, 2013.

[7] R. Rada, H. Mili, E. Bicknell, and M. Blettner, “Development and
application of a metric on semantic nets,” IEEE transactions on systems,
man, and cybernetics, vol. 19, no. 1, pp. 17–30, 1989.

[8] R. Richardson, A. Smeaton, and J. Murphy, “Using wordnet as a
knowledge base for measuring semantic similarity between words,”
1994.

[9] Z. Wu and M. Palmer, “Verb semantics and lexical selection,” arXiv
preprint cmp-lg/9406033, 1994.

[10] P. Resnik, “Semantic similarity in a taxonomy: An information-based
measure and its application to problems of ambiguity in natural lan-
guage,” Journal of artificial intelligence research, vol. 11, pp. 95–130,
1999.

[11] D. Lin, “Principle-based parsing without overgeneration,” in 31st annual
meeting of the association for computational linguistics, 1993, pp. 112–
120.

[12] P. Jaccard, “Distribution de la flore alpine dans le bassin des Dranses
et dans quelques régions voisines,” Bulletin de la Société Vaudoise des
Sciences Naturelles, vol. 37, no. May, pp. 241–272, 1901.

[13] A. Z. Broder, “On the resemblance and containment of documents,” in
Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.
No. 97TB100171). IEEE, 1997, pp. 21–29.

[14] S. Harispe, D. Sánchez, S. Ranwez, S. Janaqi, and J. Montmain, “A
framework for unifying ontology-based semantic similarity measures:
A study in the biomedical domain,” Journal of biomedical informatics,
vol. 48, pp. 38–53, 2014.

[15] R. B. Zadeh and A. Goel, “Dimension independent similarity compu-
tation,” The Journal of Machine Learning Research, vol. 14, no. 1, pp.
1605–1626, 2013.

[16] D. Sánchez, M. Batet, D. Isern, and A. Valls, “Ontology-based semantic
similarity: A new feature-based approach,” Expert systems with appli-
cations, vol. 39, no. 9, pp. 7718–7728, 2012.

[17] J. Braun-Blanquet, Pflanzensoziologie: grundzüge der vegetationskunde.
Springer-Verlag, 2013.

[18] T. A. Sorensen, “A method of establishing groups of equal amplitude in
plant sociology based on similarity of species content and its application
to analyses of the vegetation on danish commons,” Biol. Skar., vol. 5,
pp. 1–34, 1948.

[19] A. Ochiai, “Zoogeographical studies on the soleoid fishes found in japan
and its neighbouring regions-i,” Bull. Jpn. Soc. scient. Fish., vol. 22, pp.
522–525, 1957.

[20] G. G. Simpson, “Mammals and the nature of continents,” American
Journal of Science, vol. 241, no. 1, pp. 1–31, 1943.

[21] A. Tversky, “Features of similarity.” Psychological review, vol. 84, no. 4,
p. 327, 1977.

	Introduction
	Preliminaries
	Resource Description Framework
	Apache Spark
	SANSA

	Related Work
	Developments of Semantic Similarity Estimations
	Distributed Semantic Similarity Estimation Frameworks

	DistSim
	Pipeline Architecture
	DistSim as Resource
	DistSim Feature Extraction
	Semantic Similarity Estimation Models
	DistSim (Hyper-)Parameter Setup
	DistSim Use Cases

	Experiment and Evaluation
	Data Sets
	Scalability over increasing horizontal Cluster Computation
	Scalability over Data Set Size

	Conclusion and Future Work
	References

