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ABSTRACT
In recent years, there has been a growing interest in computing dataset statistics for
exploring their internal structure. Since the size of the datasets has increased, this
task became more challenging. Obtaining detailed statistical analyses of datasets fa-
cilitates a variety of instances of imperative use and offers key benefits, such as link
target identification, vocabulary reuse, quality analysis, big data analytics, and cov-
erage analysis. Several machine learning algorithms have been developed on top of
the ontology axioms to predict, classify, and make sense of the data. Therefore, there
is a pressing need to obtain a clear view of OWL datasets that have become more
prevalent. In this paper, we present the first attempt of developing a distributed
approach (OWLStats) for collecting comprehensive statistics over large-scale OWL
datasets. OWLStats is a distributed in-memory approach for computing 50 statis-
tical criteria for OWL datasets utilizing Apache Spark, with the ability to scale
horizontally to a cluster of machines. We have successfully integrated OWLStats
into the SANSA framework. Furthermore, two use cases are also presented. The
results prove that OWLStats is linearly scalable in terms of both node and data
scalability and can process various OWL datasets formats.
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1. Introduction

Enterprise data management (EDM) is a process that encompasses effectively collect-
ing, managing, and analysing enterprise data with the objective of producing useful
information that supports decision-making as well as the subsequent data usage to im-
prove business efficiency. The structure of enterprise data nowadays is far from being
static, which made it more difficult for an enterprise to efficiently manage, under-
stand, and use their data (Wood 2010). The management and the understanding of
enterprise data has been improved by using Semantic Web technologies such as the Re-
source Description Framework (RDF), RDF Schema, and the Web Ontology Language
(OWL) (Ma et al. 2009). Over the past decade, we have observed an increasing volume
of semantic data, belonging to various domains available on the Web, resulting in large-
scale semantic datasets (either in RDF or OWL format). These datasets are produced
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based on the ontology to which they conform (Li and Sima 2015). Ontologies are par-
ticularly widespread in the life sciences, where several large biomedical ontologies have
been developed, including the Biological Pathways Exchange (BioPAX) ontology1, and
the National Cancer Institute thesaurus2, and enterprise data representation, includ-
ing Zachman’s Enterprise Ontology (Kappelman and Zachman 2013). Ontologies are
being used in application areas like Software Engineering (Wongthongtham et al. 2017;
Pileggi et al. 2018), Bioinformatics (Facchiano 2017), Data Integration (De Giacomo
et al. 2018) and Enterprise Data Management (Rajabi et al. 2013).

It is of vital importance to collect comprehensive statistics on datasets illustrating
their internal structure and external consistency to assess the efficiency of the individual
datasets as well as to monitor the progress of Web data publishing and integration.
Obtaining detailed statistical analyses of datasets facilitates a variety of instances of
imperative use and offers key benefits. For example:

• Link target identification: To build a web of data, the linking between different
datasets is of crucial importance for many Linked Data applications, such as
ontology merging and fusion. Getting insights about the inner structure of a
dataset (i.e., statistics about classes, properties, vocabularies, etc.), boosts the
process of integrating and reusing datasets in semantics-based systems.

• Vocabulary reuse: Evaluating the vocabulary reuse is of significance since exist-
ing vocabularies constitute a significant prerequisite for an interoperable Web
of Data. Hence, calculating the commonly used vocabularies simplifies dataset
creation and integration.

• Quality analysis: Assessing and evaluating the quality expected, and determin-
ing whether it is sufficient for a particular application is highly important. It is
crucial to analyze datasets concerning incoming and outgoing links, the used vo-
cabularies, properties values, and their ranges, in order to create similar measures
on the Web of Data.

• Coverage analysis: To ensure that the frequent dataset properties are used with
similar entities. Furthermore, namespace frequency is an indicator of a dataset
domain, i.e., the more namespaces belonging to a domain, the more relevant the
dataset to that domain.

• Big data analytics : Process large-scale enterprise data, particularly when the
data is distributed across different locations.

A variety of approaches have attempted to compute statistics about RDF
datasets (Langegger and Woss 2009; Auer et al. 2012; Sejdiu et al. 2018). Although
these approaches are interesting, they do not allow for computing statistics over large-
scale OWL datasets. To the best of our knowledge, previous work has failed to address
statistical computations for OWL datasets. Most studies have only tended to focus on
triple structure analysis rather than the axiom structure of the datasets. OWLStats is
the first attempt to develop a distributed approach for providing comprehensive sta-
tistical information about large-scale OWL datasets. To achieve scalability, we have
implemented our approach using Apache Spark3, a distributed in-memory computing
framework. Spark is horizontally scalable and can run on multiple machine clusters, i.e.,

1http://www.biopax.org/
2https://ncit.nci.nih.gov
3https://spark.apache.org/
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the workload is spread across multiple machine memories. Due to its efficiency in han-
dling large-scale datasets and scalability, Apache Spark has recently gained consider-
able attention. The primary abstraction that Spark provides is the Resilient Distributed
Dataset (RDD). Additional advantages of using RDDs are in-memory computation,
fault tolerance, distributed partitioning, and persistence.

The ultimate goal of enterprise data management research is to increase the pro-
ductivity of organizations by building scalable data architectures that allow to adapt
quickly to changes and process very large amount of data, guarantee data consistency,
conduct valuable data analysis, and produce effective insights. Therefore, in this arti-
cle, we propose a novel approach (i.e., OWLStats) for comprehensive statistical com-
putation of large-scale OWL datasets that extends the work presented in (Mohamed
et al. 2020). We are providing 20 new axiom-based statistical criteria (Criteria 30–50
in Table 1) that have not been proposed before. Also, we conducted a new experi-
ment in which we vary the number of cluster workers in order to measure the node
scalability with more datasets with various sizes to measure the data scalability. In
the proposed approach, we adopted 30 criteria for evaluating large-scale RDF datasets
proposed in (Auer et al. 2012; Sejdiu et al. 2018) together with proposing 20 addi-
tional criteria. We compute the respective statistics in three main steps: 1) storing
the OWL dataset into a scalable distributed storage, 2) converting the input dataset
into the main data structure (i.e., RDD[OWLAxiom]), and 3) computing the statisti-
cal criteria. OWLStats is a generalised approach that allows computing statistics for
any OWL dataset (i.e., Functional, Manchester, and OWL/XML syntaxes. To empha-
size the usefulness of OWLStats, we successfully integrated it into SANSA framework
(Lehmann et al. 2017)(see section 7). SANSA is an open source4 large-scale processing
engine for efficient processing of large-scale semantic dataset that empowers business-
critical applications in many companies and enterprises around the globe, including
BigDataEurope5, Boost 4.06, and more.

The remainder of this paper is organized as follows: Section 2 gives a brief overview
of the related work. Section 3 describes the formal definitions of the statistical criterion
and the RDD operation used. The proposed approach, its statistical criteria selection,
architecture, implementation, and complexity analysis are described in Section 4. The
experimental setup and the two different experiments are presented in Section 5. The
discussion of the obtained results and three use cases are stated in Section 6. Three use
cases are presented in Section 7. The availability and sustainability that the OWLStats
fulfil are presented in section 8. Ultimately, we conclude and the potential extension
of OWLStats is discussed in Section 9.

2. Related Work

Semantic web technologies have been widely used in the enterprise data management
(da Silva Serapião Leal et al. 2020; Suga and Iijima 2018; Ali et al. 2019). The last
few years have witnessed considerable growth in the Linked Open Data (LOD), which
can be consumed by software agents. These agents can explore, stream, recommend,
and organize information in intelligent ways to assist web users. Comprehensive statis-
tics calculation on such datasets has become a vital factor in describing their internal

4https://github.com/SANSA-Stack
5https://www.big-data-europe.eu/
6https://boost40.eu/
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structure and coverage. These statistics are increasingly important in many areas, e.g.,
involving data analysis (e.g., quality analysis and coverage analysis), query optimiza-
tion, and data interlinking and reuse. In this section, we outline the work related to
RDF datasets and OWL ontologies statistics computations. Previous work has primar-
ily focused on calculating RDF statistics, ignoring to address OWL statistics, especially
for large-scale OWL ontologies.

RDF datasets statistics computations. Few researchers have addressed the problem
of calculating RDF statistics. Make-void7 is a tool, written in Java, that computes
statistics about RDF files, such as the number of triples, classes, and properties, by
running several SPARQL queries using the ARQ query engine provided in the Apache
Jena framework. It generates statistics in RDF format using VoID vocabulary in order
to make it machine-readable. RDFStat (Langegger and Woss 2009) is another frame-
work, based on the Jena framework, for calculating statistics from RDF sources, such
as documents and SPARQL endpoints. It can generate statistical data, such as the
number of instances, as well as histograms for a variety of various data types. Con-
trary to make-void, RDFStats can utilize SPARQL endpoints for querying RDF data
and provides visualizations for its statistics. Furthermore, it does not use VoID (Vo-
cabulary of Interlinked Datasets) for statistics description but rather describes them
using SCOVO (Statistical Core Vocabulary (Hausenblas et al. 2012)).

LODStats (Auer et al. 2012) is an approach, written as a Python module and uses
the Redland library (Beckett 2001), for computing 32 different statistical criteria, such
as typed string length, max per property, and class hierarchy depth, the results are
described using VoID. The main advantage of LODStats, when compared to current
approaches, is its significantly better performance and scalability as well as low memory
consumption. One of the limitations of LODStat is that it can operate only on a
single triple pattern, i.e., it does not support, for example, star patterns (Gottron
et al. 2013). Nevertheless, it provides several schema-level statistics, such as RDFS
sub-hierarchy depth, and data-level statistics, such as counting triples with literals.
LODStats has been integrated with the Comprehensive Knowledge Archive (CKAN)8
dataset metadata registry to get a general overview of the current state of the Data on
the Web.

Concerning distributed processing-based approaches, BÃűhm et al. (Böhm et al. 2011)
have developed a scalable approach that automatically generates VoID descriptions for
large corpora of Linked Data in a distributed manner. A distributed, in-memory ap-
proach for the computation of large RDF datasets statistics is DistLODStats (Sejdiu
et al. 2018). DistLODStats extends LODStats by calculating the same statistical crite-
ria but in a distributed and scalable manner. DistLODStats is implemented using the
Apache Spark framework and is integrated into SANSA. One of the pitfalls of DistLOD-
Stats and LODStats is that it can only calculate statistics for RDF datasets. Despite
these efforts, no one as far as we know has proposed an approach for computing statis-
tics about OWL datasets. Therefore, we took the step towards implementing a scalable
approach that can provide statistical information about large-scale OWL datasets (up
to 55 millions axioms in the biomedical domain (Matentzoglu et al. 2013)). Actually,
OWL datsets are widely used by semantics-based systems, such as Swoogle (Ding et al.
2004) and Watson (d’Aquin and Motta 2011). The proposed approach is the first at-
tempt to compute comprehensive statistics over large-scale OWL datasets. Previous

7https://github.com/cygri/make-void
8http://thedatahub.org/
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studies (Langegger and Woss 2009; Auer et al. 2012; Sejdiu et al. 2018) have focused on
triple structure analysis rather than the axiom structure of the datasets. Consequently,
the proposed approach cannot be compared with any of these approaches. Differently,
we proposed 20 novel axiom-based criteria that are not yet proposed in any of the
related work.

3. Definitions

The following definition formalizes the concept of statistical criteria (Auer et al. 2012):

Definition 1 (Statistical Criterion): A statistical criterion C is a triple C =
(F,D, P ), where: F is a SPARQL filter condition, D is a derived dataset from the
input dataset (RDD of OWLAxioms9) after applying F, and P is a post-processing
filter operating on the data structure D.

In Definition 1, F serves as a filter operation to decide whether an axiom matches
the condition of a specific criterion. The dataset is processed axiom by axiom, where
each axiom examined is matched against each triple design of each criterion. D is the
result RDD after applying F on the input OWL dataset. In most cases, the post-
processing step is not required. However, P returns values from the derived dataset D.
Post-processing operation performs further computational steps, such as retrieving the
top-n elements of D. A formal representation for each statistical criterion is shown in
Table 1.

For instance, consider Criteria #29 in Table 1, this criterion, i.e., the average per
property computes the entities with their average values in the dataset. Here, the
Criterion name is “Average per property (int, float, time)”, the Description is “Lists
all entities and their average values in the dataset”, the Filter is “Filter all the data
property assertions and check if the object is literal and of type: int, or float, or time”,
the Action is “Calculate the number of objects connected with each property m1 and
the number of properties m2”, and the Post-Processing is m1/m2.

Definition 2 (RDD Operations): All the statistical criteria implemented using
the following operations: map, filter, reduceByKey, groupBy, and combineByKey. All
RDD operations are documented in RDD Programming Guide10. A brief formalization
for each operation is given as follows:

• map: The map function iterates over every line in RDD and converts it into a new
RDD based on a specific function.

• flatMap: flatMap is similar to map operation, except that map return one element,
while flatMap return a list of elements based on a specific function.

• filter: New RDD returned containing only the elements that match a certain condi-
tion.

• reduceByKey: The input RDD is a key-value (K, V) pairs, the pairs on the same
machine with the same key are combined before the data is shuffled.

• groupBy: The input RDD is a key-value (K, V) pairs, returns a new RDD of (K,
Iterable<V>) pairs after applying a grouping function (e.g., average, count) over the

9http://owlcs.github.io/owlapi/apidocs_5/org/semanticweb/owlapi/model/OWLAxiom.html
10https://spark.apache.org/docs/latest/rdd-programming-guide.html
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input RDD.

4. Approach

OWLStats adopted 30 criteria proposed in (Auer et al. 2012; Sejdiu et al. 2018) and
added 20 more criteria. In contrast to (Sejdiu et al. 2018), we perform the statistical
computation on the axiom structure of the OWL datasets. We carried out the computa-
tion in a Spark distributed environment using RDDs (See Definition 2). The proposed
approach involves the conversion of the input OWL dataset to RDDs of OWLAxioms.

4.1. Statistical Criteria Selection

To obtain a comprehensive set of statistical criteria, we generated our criteria from:

(1) collecting and merging statistical criteria from related work, including LOD-
Stats (Auer et al. 2012) and DistLODStats (Sejdiu et al. 2018),

(2) analyzing OWL data model elements, i.e., potential elements as owl:Class,
owl:ObjectProperty, and owl:DatatypeProperties, literals (including
datatypes and language tags), class descriptions (including intersection,
union and complement), and value constrains (including allValuesFrom and
someValuesFrom) ... etc, and

(3) interviewing expert from the SDA research group and other related organizations.

We give a detailed description about rule syntax of our statistical criteria in Table 1.
We split the 50 statistical criteria we collected into two groups; 1) data-level and 2)
schema-level criteria.

Data-Level criteria: OWLStats collects statistical information on data items, such
as the list of datatypes used for literals. If the dataset contains a string or untyped
literals, then the dataset’s overall average string length is calculated. Furthermore, the
frequencies of links between entities of different namespaces, number of all axioms,
labeled subjects, typed subjects, and the axioms which define the same or different
individuals are computed as well. OWLStats can generate a list of various datatypes
used for literals, such as string, integer, date, ... etc.

Schema-Level criteria: we collect detailed statistics on the schema elements, such as
classes, subclasses, and properties (both declared and used in the dataset). Moreover,
OWLStats can analyze more complicated schema-level properties, such as property
restrictions (i.e., value and cardinality constraints), and class descriptions (i.e., inter-
section, union, and complement).

4.2. OWLStats Architecture

Figure 1 illustrates the main workflow of the statistical computation proposed by OWL-
Stats. OWLStats approach consists of three main steps: 1) Input: Storing the OWL
dataset into a scalable distributed storage, 2) Processing: Converting the input dataset
into the main data structure (i.e. RDD[OWLAxiom]), and computing the statistical cri-
teria, and 3) Output: generating the results.
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Table 1.: Statistical criterion defined by Spark rules.

No. Criterion Rule Filter → Rule Action Postproc.
1 used classes A=Class_Assertion → map(_.getClassExpression) -

2 class usage count A=Class_Assertion
→.map(a =>(a.getClassExpression,1))
.reduceByKey(_+_) take(100)

3 classes defined A=Declaration.isOWLClass → map (_.getEntity.getIRI) -
4 class hierarchy depth A=SubClass_Of G +=(a.getSubClass, a.getSuperClass) depth(G)

5 data property usage A=Data_Property_Assertion
→map (a => (a.getProperty, 1))
.reduceByKey(_+_) take(100)

6 object property usage A=Object_Property_Assertion
→map (a => (a.getProperty, 1))
.reduceByKey(_+_) take(100)

7 property usage distinct
per subj.

→ groupBy(_.getSubject)
.reduceByKey(_+_) count()

8 property usage distinct
per obj.

→ groupBy(_.getObject)
.reduceByKey(_+_) count()

9 properties distinct per
subj.

→ groupBy(_.getSubject)
.combineByKey(_+_) sum/count

10 properties distinct per
obj.

→ groupBy(_.getObject)
.combineByKey(_+_) sum/count

11 outdegree
→map(_.getSubject)
.map(a => (a, 1))
.combineByKey(_+_)

sum/count

12 indegree
→map(_.getObject)
.map(a => (a, 1))
.combineByKey(_+_)

sum/count

13 data Property hierarchy
depth

A=Sub_Data_Property_Of
G += (a.getSubProperty,
a.getSuperProperty) depth(G)

14 object Property hierar-
chy depth

A=Sub_Object_Property_Of
G += (a.getSubProperty,
a.getSuperProperty) depth(G)

15 subclass usage A=SubClass_Of →count() -
16 axioms →count() -

17 entities mentioned →map(a=>(a.getSubject,a.getObject)
.count() -

18 distinct entities →map(a=>(a.getSubject,a.getObject)
.distinct() -

19 literals
A=Data_Proeprty_Assertion
&& obj.isLiteral → count() -

20 datatypes
A=Data_Proeprty_Assertion
&& obj.isLiteral

→ map (a => (o.getDatatype, 1))
.reduceByKey(_+_) -

21 languages
A=Data_Proeprty_Assertion
&& obj.isLiteral

→map (a => (o.getLang, 1))
.reduceByKey(_+_) -

22 average typed string
length

A=Data_Proeprty_Assertion
&& obj.isLiteral &&
obj.getDatatype = XSD_STRING

→count()
len+=o.length len/count

23 average untyped string
length

A=Data_Proeprty_Assertion
&& obj.isLiteral &&
!obj.getDatatype.isEmpty()

→count()
len+=o.length len/count

24 typed subject A=Axiom_TYPES &&
p=RDF_TYPE →count() -

25 labeled subject
A=Annotation_Assertion
&& a.getProperty.isLabel →count() -

26 sameAs A=SAME_INDIVIDUAL →count() -

27 namespace links A=Axiom_TYPES &&
s.getNS != o.getNS

→map (a => ((s.getNS,o.getNS),1))
.reduceByKey(_+_) -

28 max per property
{int,float,time}

A=Data_Proeprty_Assertion &&
o.isLiteral&& o.getDatatype =
isInt | isFloat | isDateTime

→map (_.getProperty, _.getObject)
.reduceByKey(_ max _) -

29 avg per property
{int,float,time}

A=Data_Proeprty_Assertion &&
o.isLiteral&& o.getDatatype =
isInt | isFloat | isDateTime

→m1 => map(_.getObject).count()
m2 => map(_.getProperty).count() m1/m2

30 subj. vocabularies →map (a => (a.getsubject.getNS,1))
.reduceByKey(_+_) -

31 pred. vocabularies →map (a =>(a.getProperty.getNS,1))
.reduceByKey(_+_) -

32 obj. vocabularies →map (a => (a.getObject.getNS,1))
.reduceByKey(_+_) -

33 subdata property usage A=Sub_Data_Property →count() -
34 subobject property us-

age
A=Sub_Object_Property →count() -

35 subannotation property
usage

A=Sub_Annotation_Property →count() -

36 classes count →flatMap(a => a.classesInSignature)
.count()

-
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No. Criterion Rule Filter → Rule Action Postproc.

37 data properties count →flatMap(a => a.dataProperties
InSignature).count() -

38 object properties count →flatMap(a => a.objectProperties
InSignature).count() -

39 class assertion count A=Class_Assertion →count() -
40 data property assertion

count
A=Data_Property_Assertion →count() -

41 object property asser-
tion count

A=Object_Property_Assertion →count() -

42 annotation property as-
sertion count

A=Annotation_Property_Assertion→count() -

43 different individuals A=Different_Individuals →count() -

44 object intersection A=Equivalent_Classes &&
Type=Object_Intersection_Of →map(_.getOperandsAsList.get(1)) count()

45 object union A=Equivalent_Classes &&
Type=Object_Union_Of →map(_.getOperandsAsList.get(1)) count()

46 object complement A=Equivalent_Classes &&
Type=Object_Complement_Of →map(_.getOperandsAsList.get(1)) count()

47 data SomeValuesFrom A=Equivalent_Classes &&
Type=Data_Some_Values_From →map(_.getOperandsAsList.get(1)) count()

48 data AllValuesFrom A=Equivalent_Classes &&
Type=Data_All_Values_From →map(_.getOperandsAsList.get(1)) count()

49 data Cardinality
A=Equivalent_Classes &&
Type=Data_Min_Cardinality ||
Type=Data_Max_Cardinality

→map(_.getOperandsAsList.get(1)) count()

50 data HasValue A=Equivalent_Classes &&
Type=Data_Has_Value →map(_.getOperandsAsList.get(1)) count()
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Step 1 (Input): To read the OWL dataset efficiently, Spark needs the dataset
to be stored in a large-scale storage system. The Hadoop Distributed File-System
(HDFS) (Shvachko et al. 2010) is used for data storage. HDFS is designed to store
and stream large datasets for user applications efficiently. HDFS splits the data into
separate blocks when the data is loaded into HDFS, then it replicates and distributes
the blocks to various nodes in a cluster, allowing highly efficient parallel processing
and fault-tolerance. Consequently, the node information that crash can be found in a
cluster elsewhere.

Step 2 (Processing): To convert the input OWL dataset, we used SANSA-OWL11

layer for the conversion. SANSA-OWL layer supports the conversion for three input
formats: Functional, Manchester, and OWL/XML. SANSA-Stack influences current
big data frameworks such as Apache Spark and Apache Flink (Ermilov et al. 2017).
Apache Spark is a powerful analytics engine for large-scale data analysis. SANSA
utilizes Scala programming language to provide the distributed implementations of
the proposed algorithms. For each criterion, we start an execution plan to filter the
input dataset and calculate the output. It is intended as a bridge between RDF data
publishers and consumers, with applications ranging from data exploration to data
cataloging and dataset archiving.

Step 3 (Output): A sample of the output results for LUBM-5, shown in Listing 1.
Lines 1-2 in Listing 1 show the outcomes of computing the Classes Defined and Object
Property Usage criteria in LUBM-5, which are 43 and 12, respectively. While, line 4
illustrates the number of axioms containing the object property takesCourse, which
are 134051 axioms. Spark transformations, i.e., map, filter, groupBy, reduceByKey,
perform the calculations. Computing phase output would be the statistical results ex-
pressed in a human-readable format, e.g., VoID. VoID12 is an RDF Schema vocabulary
to represent metadata about RDF datasets.

Listing 1: A snippet of sample output of the statistics generated for LUBM-5 dataset
1 void:classes 43;
2 void:objectProperties 12;
3 void:propertyPartition
4 [ void:objectProperty <#takesCourse>; void:axioms 134051; ],
5 [ void:objectProperty <#publicationAuthor>; void:axioms 67702; ],
6 [ void:objectProperty <#memberOf>; void:axioms 48582; ],
7 [ void:objectProperty <#advisor>; void:axioms 19371; ],
8 [ void:objectProperty <#undergraduateDegreeFrom>; void:axioms 15273; ],
9 [ void:objectProperty <#teacherOf>; void:axioms 10095; ],

10 [ void:objectProperty <#mastersDegreeFrom>; void:axioms 3373; ],
11 [ void:objectProperty <#doctoralDegreeFrom>; void:axioms 3373; ],

4.3. Implementation

This section explains the implementation of OWLStats framework. All phases of the
OWLStats have been implemented using Apache Spark. Scala13 programming language
API has been used to provide a distributed implementation of the proposed approach.
Algorithm 1 establishes the primary dataset from an OWL file (as constructed in line

11https://github.com/SANSA-Stack/SANSA-Stack/tree/develop/sansa-owl
12https://www.w3.org/TR/void/
13https://www.scala-lang.org/
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2). The algorithm takes as input: the OWL dataset, the syntax of the OWL dataset (we
support Functional, Manchester and OWL/XML syntax), and the list of the statistical
criteria.

Algorithm 1: OWLStats computation over a set of statistical criteria
Input: spark : Spark Session,

input : The OWL dataset,
syntax : Syntax type (func, manch, owlxml),
CL: List of criterion

1 begin
2 RDD axioms = input.convert(spark, syntax)
3 axioms.cache()
4 foreach c ∈ CL do
5 rdd ← c.filter(axioms)
6 rdd.cache()
7 rdd ← c.action(rdd)
8 if c.hasPostProc then
9 rdd ← c.postProc(rdd)

10 end
11 end

Line 2 converts the input OWL file into RDD[OWLAxiom]. Afterwards, for each cri-
terion defined inside OWLStats, the algorithm computes them using the filter, action,
and post-processing operations (lines 5, 7, and 9). Every transformed RDD can be re-
calculated by default each time running an action on it. Nevertheless, an RDD could
be persisted in memory for quicker access when needed instead of reconstructing the
RDD. Spark caching techniques, persist or cache actions, can be used for faster access
to RDD elements. In the OWLStats algorithm, caching is used twice to persist RDD
elements in memory. In line 3, the OWLAxioms RDD to be used for each criterion is
cached. Afterwards, caching derived RDD after applying the criterion filter condition
on the input dataset (line 6).

Algorithm 2 describes the filter, action, and post-processing operations for Criterion
2 listed in Table 1. Function filter() extracts all the Class_Assertion axioms from
the input OWLAxioms RDD and then convert it to RDD[OWLClassAssertionAxioms]
instead of RDD[OWLAxiom] (lines 3-4), then get all the class expressions within the
OWLClassAssertionAxioms (line 5). Afterwards, action() function is applied to calcu-
late the frequency of each OWLClassExpression (lines 8-9). Finally, postProc() function
is called to sort the calculated action() and return the first 100 OWLClassExpression
with their corresponding frequencies (line 12).

4.4. Complexity Analysis

Communications between nodes at large-scale data processing greatly affects the per-
formance of enterprise systems (Xhafa 2021; Mishra et al. 2021). In this section, we
analyze the performance of our approach in criteria computing which is primarily af-
fected by the performance of two main tasks:

• Data Scanning: All operations that involve assessing the condition on an RDD
are considered scan based operations. The data is only scanned once for all criteria

10



Algorithm 2: Classes usage count criterion
Input : axioms: rdd of the converted OWL dataset
Output: result : first 100 Classes and there usage frequency

1 begin
2 Function filter():RDD[OWLClassExpression]
3 val f = extractAxioms(axioms, AxiomType.CLASS_ASSERTION)
4 .asInstanceOf[RDD[OWLClassAssertionAxiom]]
5 .map(_.getClassExpression)
6 return f
7 Function action():RDD[(OWLClassExpression, Int)]
8 val a = filter().map(e => (e, 1))
9 .reduceByKey(_ + _)

10 return a
11 Function postProc():RDD[(OWLClassExpression, Int)]
12 val p = action().sortBy(_._2, false).take(100)
13 return p
14 end

when using the criterion filter along the same data. However, whenever data
changes its status, for example, when removing the duplicate elements from the
RDD, a new scan of the new status is required. Eventually, if the data is moved
between cluster nodes (i.e., data is shuffled), a new scan is required.

• Data Shuffling and Filtering: Data shuffling means moving data around the
network, i.e., between cluster nodes. If there is data movement required during the
distributed processing, then the calculation might place more processing overhead
which will significantly affect the performance. For example, to do a distributed
groupBy or groupByKey operations, Spark typically has to move the data between
nodes and gather them with groupBy key. Filters are another aspect that affects
the performance of criteria calculations. It is preferable to filter the data in the
early phases so that the subsequent phases take less processing.

Table 2 summarizes the complexity analysis of the computation of each criterion,
which depends on the performance of the aforementioned tasks. We consider the com-
plexity to be linear since just mostly one scan is necessary. However, in other cases,
(such as data sorting in criterion 2, 5, and 6), the complexity will rise when there are
iterative executions.

4.5. Benchmark

Lehigh University (LUBM) (Guo et al. 2005) synthetic benchmark has been used for
the experiment. For the evaluation of Semantic Web repositories, LUBM is a commonly
used benchmark for evaluating the efficiency of such repositories regarding extensional
queries over a large dataset. LUBM benchmark14 comprises four components: 1) the
domain ontology (i.e., Univ-Bench), 2) the data generator (UBA) which generates the
OWL or DAML+OIL data over the domain ontology. 3) Currently, the benchmark
supports 14 test queries, and 4) The test module (UBT). LUBM generator generates
many A-Box axioms but no T-Box axioms. We use the LUBM data generator in our
experiment to generate five datasets of different sizes: LUBM-50, LUBM-200, LUBM-
500, LUBM-1000, and LUBM-2000. The numbers attached to the benchmark name

14http://swat.cse.lehigh.edu/projects/lubm/
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Table 2.: Complexity analysis breakdown by statistical criterion (n is the number of
OWLAxioms).

Criterion Complexity Shuffling Performance Analysis
1, 3 O(n) No Data is locally filtered and returned.
2, 5, 6 depending on

the sorting
algorithm
applied.

Yes Sorting in post-processing entails the movement of
data. As classes are originally distributed over the
cluster, computing their counts involves shuffling
and reducing the data.

7, 8, 9, 10 O(n) Yes Before invoking the groupBy operation, the data
needs to be shuffled then it is reduced by subject or
object.

4, 13, 14 O(n3) No Data is locally filtered to extract the parent and
child relations and returned, so no data movement
is needed.

11, 12, 20, 21 O(n) Yes Data is mapped to (subject, 1) pairs and then
reduced by subject counting the 1s following the
map-reduce technique, therefore data needs to be
shuffled before invoking the groupBy operation.

15, 16, 17,
33, 34, 35

O(n) No No data transmission is required since the count is
simultaneously computed locally in each node and
then aggregated together for the cluster.

18 O(n) No It requires no data transmission since it returns the
OWL Axioms after verifying isNamed condition.

19, 24, 25,
26, 39, 40,41,
42, 43

O(n) No No data transmission is required since data is lo-
cally filtered and counted in parallel and the sepa-
rate counts are aggregated together.

22, 23 O(n) No Map the objects to their own length, then calculate
the average of the object strings. The overall av-
erage is calculated by collecting single values from
each node, which requires no data shuffling.

27 O(n) Yes Data is mapped to ((subject, object), 1) pairs
and then reduced by (subject, object) keys and
count the 1s following the map-reduce technique.
Therefore, data movement is needed.

28 O(n) Yes Data is moved in the cluster to get the maximum
value per property, i.e., data is reduced to get the
maximum.

29 O(n) Yes Data is reduced by property, then moved across the
cluster to calculate the average.

30, 31, 32 O(n) Yes Data is mapped to (target, 1) pairs; (target is
subject, or predicate, or object) and then reduced by
target, and count the 1s following the map-reduce
technique. Therefore, data movement is needed.

36, 37, 38 O(n) No No data transmission is needed, since the data is
flat mapped first to get the desired axiom type then
it locally filtered. Separate counts are calculated lo-
cally and summed up to calculate the overall count.

44, 45, 46,
47, 48, 49, 50

O(n) No Data is locally filtered to extract the specific
ClassExpressionType. The counting in the post-
processing step requires no data transmission be-
cause it is also computed locally in each cluster node
before calculating the overall count.

12



Table 3.: LUBM benchmark datasets (functional syntax)

Dataset Size (GB) Load Time (m) #Axioms
LUBM-10 0.3 1 1,316,517
LUBM-50 1.3 8 6,654,756
LUBM-150 3.8 15 26,782,455
LUBM-200 4.8 23 31,178,382
LUBM-500 10.5 82 77,577,078
LUBM-1000 20.3 126 151,066,104
LUBM-2000 41.2 230 306,002,524

are the number of generated universities. Properties of the generated datasets, loading
time to the HDFS, and the number of axioms of each dataset are listed in Table 3. To
create larger datasets from the ontology files created from the LUBM benchmark, we
implemented a merge tool. In addition, we use LUBM datasets with various formats
(such as OWL/XML and Manchester). The results reported are in functional syntax
format.

5. Experiments

In this section, we describe the evaluation of OWLStats. We are aiming at answering
the following questions concerning scalability and flexibility:

Q1) How efficient can OWLStats compute the introduced statistics?

Q2) How is the speedup ratio affected with respect to the number of worker nodes?

Q3) How does OWLStats process different datasets with various sizes?

Q4) How does OWLStats scale to larger datasets?

We start with the experimental setup, afterwards we give a brief description of the
introduced experiments.

5.1. Experimental Setup

System configuration. All distributed experiments ran on a cluster with five nodes.
Among these nodes, one is reserved to act as the master, and four nodes are used
as computing workers. Each node has AMD Opteron 2.3 GHz processors (64 Cores),
250.9 GB memory, and the configured capacity is 1.7 TB. The nodes are connected
with 1 Gb/s Ethernet. Moreover, Spark v2.4.4 and Hadoop v2.8.1 with Java 1.8.0 is
installed on this cluster. Local-mode experiments are all carried out on a single cluster
instance. All distributed experiments run three times, and the results indicate the
average execution time.

5.2. Scalability Experiments

We evaluate our approach using the aforementioned datasets to study its performance
as well as scalability. In this evaluation, we measure the scalability of OWLStats based

13
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Figure 2.: OWLStats node scalability performance evaluation

on node and data scalability.

Experiment 1 (Node Scalability). This experiment was designed to measure the
performance evaluation in terms of the number of nodes, which proves that the runtime
decreases when the number of nodes increases. This experiment is aiming at answering
the research question Q1. In this experiment, we increase the number of cluster workers
to measure the node scalability. We have increased the number of workers from one to
four (with one step each time) on the same dataset (i.e., LUBM-200).

Experiment 2 (Data Scalability). This experiment was designed to assess
whether the OWLStats can handle large-scale datasets. This experiment is aiming
at answering the research questions Q2, Q3, and Q4. In this experiment, we mea-
sure the efficiency of OWLStats by increasing the size of the input dataset. We retain
a constant number of nodes (workers) at five in the cluster and increase the size of
datasets. To test the data scalability of OWLStats, we run the experiments on the
LUBM benchmark with five different sizes. We begin by generating a dataset of 50
universities (LUBM-50), then we iteratively increase the number of universities (i.e.,
scaling up the size).

6. Results and Discussion

Figure 2 and Figure 3 report the results of efficiency analysis for node and data scala-
bility, respectively.

Experiment 1 Results: Figure 2 shows LUBM-200’s speedup efficiency by raising
the number of worker nodes from one to five. The execution time decreased around
three times (from 26.3 min to 8.2 min). It is evident that as the number of workers
increases, the execution time decreases linearly. The speedup ratio (S) is an essential
metric for calculating the performance of parallel algorithms (addressing Q1). The
speedup ratio is the ratio S = TL/TN , where TL is the execution time of the algorithm
in local mode, and TN is the time on N workers. Efficiency E measures the speedup
per worker. It is the time taken to run the algorithm in local mode against the time
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Figure 3.: OWLStats sizeup performance evaluation

on N workers, E = S/N . Figure 5 illustrates the speedup and efficiency ratios for the
LUBM-200 dataset. The speedup for the selected data is increased sequentially with
respect to the number of workers. In conclusion, the findings illustrate that OWLStats
would achieve near-linear scalability of output in the sense of speedup.

Experiment 2 Results: Figure 3 displays the run time of the proposed distributed
algorithm with and without caching for each dataset.

Caching is a mechanism to speed up applications that have multiple access to the
same RDD, which keeps the data in memory and accelerates the computations. It
is apparent from Figure 3, the reduction in execution time between OWLStats with
caching (blue columns) and without caching (red columns). The x-axis represents the
LUBM datasets produced with an increase in the number of universities, while the
y-axis represents the execution time within minutes. For example, calculating the 50
statistics criteria with LUBM-2000 costs around 31 minutes without using the caching
mechanism, while the time after caching was triggered, decreased to 24 minutes. Spark
has the performance advantage of using in-memory data storage. The use of data
storage in memory contributes to a decrease in the average time spent on network
communication and data read/write using disk-based approaches. It is evident that
the execution time increases linearly as the size of the dataset increases. The results
show that our algorithm can be scaled according to the dataset size, which answers Q3
and Q4.

Figure 4 shows the output obtained from running OWLStats in a multi-machine
(five machines) cluster environment. For more illustrations, consider the LUBM-1000
dataset; the execution time decreased from 48.83 minutes in a single machine envi-
ronment (local) down to 19.67 minutes in multiple machines environment (cluster).
The observed time decrease can be interpreted as a result of multiple machine distri-
bution of the computation. For LUBM-1000, the use of cluster mode speeds up the
performance by two times, which addresses Q2.
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Criteria Execution.

The overall execution time of OWLStats per each criterion is illustrated in Figure 6.
The runtime for each criterion is reported for both LUBM-50 and LUBM-200 datasets.
OWLStats consists of 50 statistical criteria; each criterion execution time depends on
the number of the input OWLAxiom. The findings obtained from both datasets’ ex-
ecution show that the runtime is less when there is no data shuffle inside the cluster.
Criteria 25, requires less execution time since it relies on OWLAnnotationAssertions
of type owl:literal and the number of annotation assertions in LUBM benchmark
not too much. The longest execution time is taken by Criteria 17. The reason refers
to that even though it requires no data shuffling, but no filter is applied to the in-
put data; therefore, the whole dataset is processed to evaluate the criteria. LUBM
benchmark generates many A-box axioms (i.e., assertions) but no T-Box axioms; thus,
criteria from 33 to 43 consume a long execution time because they are all evaluated
on assertion axioms. Criteria 30, 31, and 32 concerning the vocabularies used in the
dataset are considered efficient since there is no data movement among the cluster
nodes. Criteria 44 to 50 were not evaluated because the LUBM benchmark contains
only six OWLEquivalentClasses such that those consume almost no time. Overall, the
experiments led us to conclude that OWLStats can complete statistical computation
execution in a reasonable time, proving that OWLStats distributed statistical criteria
computation is scalable.

To evaluate OWLStats over more complex ontologies (i.e., ontologies with more T-
Box axioms), we use it over Gene Ontology (GO)15. GO is considered the leading
source of gene information. It consists of 601,235 axioms. OWLStats computes all
criteria within 326 seconds on a cluster of five worker nodes. Furthermore, we evaluate
OWLStats over the University Ontology Benchmark (UOBM)16, which generates more

15http://geneontology.org/
16https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/
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complex and realistic datasets. We generate a dataset with ten universities (maximum
number of universities offered by the benchmark), which contains 1,475,83 axioms.
Within 195 seconds, OWLStats measures all statistical criteria on a cluster of five
worker nodes.

7. Use Cases

OWLStats is a generic software component for computing statistical information about
large-scale OWL datasets. In this section, we present three real-world projects that uses
our proposed approach.

Use case 1 (SANSA-Stack17): OWLStats has been successfully integrated into
Scalable Semantic Analytics Stack (SANSA-Stack) framework (Lehmann et al. 2017;
Ermilov et al. 2017). SANSA is an open source18 large-scale processing engine for

17https://sansa-stack.net/
18https://github.com/SANSA-Stack
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efficient processing of large-scale RDF datasets. The need for utilizing fault-tolerant
big data frameworks such as Apache Spark and Flink is raised to process this massive
amount of data efficiently. SANSA is built on top of Spark, offering a set of facilities
for the representation (RDF and OWL), querying, and inference of semantic data.
Currently, SANSA-RDF19 layer supports 32 statistical criteria for RDF datasets. Some
of the machine learning algorithms in the inference and machine learning layers are
built on the top axioms level. Therefore, we integrated OWLStats into the SANSA
framework to support the SANSA-OWL layer to compute 50 statistical criteria based
on OWL datasets (Functional, Manchester, and OWL/XML formats).

Use case 2 (PLATOON Project20): PLATOON is an EU-funded H2020 project
that digitizes the energy sector with the adoption of AI techniques. The objective is
to increase renewable energy consumption, smart grids management, and energy effi-
ciency. The PLATOON reference architecture is used to construct and deploy scalable
and replicable energy management solutions. PLATOON partners use many large-
scale proprietary ontologies that reflect energy-related tools such as wind turbines,
geo-location, weather, etc. OWLStats is used in PLATOON to collect statistical infor-
mation about the inner structure of the underlying datasets to assist in the development
of cluster and classification algorithms. For example, OWLStats is used to calculate
how many classes are used on an accident ontology for classification purposes.

Use case 3 (ABSTAT): ABSTAT (Spahiu et al. 2016) is a summarization frame-
work to support linked set understanding. ABSTATS21 framework can provide compact
as well as concise summaries for a given dataset. To derive summarization for more
input datasets of OWL formats, OWLStats will be used.

8. Availability and Sustainability

Below, we describe the availability and sustainability that OWLStats fulfils, including
the availability of the statistics, as well as how we support sustainability.

• Availability. OWLStats is available as an open-source software component in the
OWL layer of the SANSA-Stack GitHub repository22. SANSA is well-maintained
and makes use of community resources such as SANSA website17, mailing list23,
issue tracker24, documentation25, ... etc . It is licensed under the Apache License
2.0.

• Sustainability. The sustainability of OWLStats is demonstrated through SANSA-
Stack contributors26. A new release is published every six months since 2016. In
addition, bugs and improvement suggestions can be submitted through the issue
tracker on its GitHub repository

19https://github.com/SANSA-Stack/SANSA-Stack/tree/develop/sansa-rdf
20https://platoon-project.eu/
21http://abstat.disco.unimib.it/
22https://github.com/SANSA-Stack/SANSA-Stack/tree/develop/sansa-owl/sansa-owl-spark/src/main/
scala/net/sansa_stack/owl/spark/stats
23https://sansa-stack.net/community/#MailingLists
24https://github.com/SANSA-Stack/SANSA-Stack/issues
25https://sansa-stack.net/user-guide/
26https://sansa-stack.net/community/#Contributors
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9. Conclusion and Future Work

In this paper, we proposed the OWLStats approach that is a flexible, robust, and
scalable approach. OWLStats is capable of computing 50 statistical criteria for large-
scale OWL datasets. Astonishingly, after reviewing the literature, we found no tool
capable of calculating these statistics for such datasets. Accordingly, OWLStats is the
first attempt at developing a scalable, in terms of both data and node scalability,
open-source distributed framework for computing comprehensive statistical informa-
tion about OWL datasets. OWLStats has successfully generated 50 statistical criteria
about large-scale datasets (+40 GB in size) on a cluster of five worker nodes. Three
real-world use cases for OWLStats are presented; i.e., SANSA framework, PLATOON,
and ABSTAT. To achieve the sustainability of OWLStats, we made it available as
a software component in the OWL layer of the SANSA-Stack, which is constantly
maintained by SANSA-Stack contributors. We carried out two experiments to test
OWLStats’s efficiency as well as the data and node scalability. The evaluation re-
sults demonstrated that OWLStats is usable and effective for unveiling the structure
of large-scale OWL datasets in various OWL formats, i.e., Functional, Manchester,
and OWL/XML. It achieved near-linear scalability of output in the sense of speedup,
therefore the scalability of the proposed approach is assured.

To further our research, we are planning to add more criteria that cover further OWL
axioms structures. Moreover, we aim at introducing further improvements in terms of
code optimization, such as utilizing different persisting strategies as well as Alluxio27

for bridging the gap between the application and storage system. Alluxio is the first
open-source data platform for analytics and cloud AI in the world.
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