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Abstract—Nowadays, ontologies are used in various application
areas, involving Artificial Intelligence, Natural Language Process-
ing, Data Integration, and Knowledge Management. It is essential
to know the internal structure, distribution, and coherence of
the published datasets to make it easier for reuse, interlink,
integrate, infer, or query. Therefore, there is a pressing need
to obtain a clear view on OWL datasets became more prevalent.
In this paper, we present OWLStats, a software component for
computing statistical information about large scale OWL datasets
in a distributed manner. We present the primary distributed in-
memory approach for computing 50 different statistical criteria
for OWL datasets utilizing Apache Spark, which can scale
horizontally to a cluster of machines. OWLStats has been
integrated into the SANSA framework and anther two uses cases
are also presented. The preliminary results prove that OWLStats
is linearly scalable in terms of both node and data scalability.

Index Terms—Apache Spark, Distributed Processing, OWL
Statistics, SANSA Framework

I. INTRODUCTION

The ontologies are particularly widespread in the life
sciences, where several large biomedical ontologies have
been developed, including the Biological Pathways Exchange
(BioPAX) ontology1, the GALEN ontology2, and the National
Cancer Institute thesaurus3. The ontologies are being used in
application areas like Artificial Intelligence [1], [2], Natural
Language Processing [3], Data Integration [4] and Knowl-
edge Management Systems [5]. It is of vital importance to
collect comprehensive statistics on the datasets illustrating
their internal structure and external consistency to assess the
efficiency of the individual datasets as well as to monitor the
progress of Web data publishing and integration. Obtaining
detailed statistical analyzes of datasets facilitates a variety
of instances of imperative use and offers key benefits. For
example: 1) Link target identification: To build a web of data,
the linking between different datasets is of crucial importance
for many Linked data applications such as ontology merg-
ing and fusion. Getting legitimate insights almost the inner

1http://www.biopax.org/
2http://www.openclinical.org/prj_galen.html
3https://ncit.nci.nih.gov

structure of a dataset (mainly about the used classes, proper-
ties, vocabularies, etc.), rapid the identification of appropriate
target datasets for linking will be significantly simplified.
2) Vocabulary reuse: Evaluating the vocabulary reuse is of
significance since built up vocabularies constitute a signifi-
cant prerequisite for an interoperable Web of Data. Hence,
calculating the commonly used vocabularies simplifies dataset
creation and integration. 3) Quality analysis: Assessing and
evaluating the quality expected, and determining whether it
is sufficient for a particular application is highly important.
It is crucial to analyze datasets concerning incoming and
outgoing links, the used vocabularies, and properties values
and ranges, in order to create similar measures on the Web
of Data. 4) Coverage analysis: To ensure that the frequent
dataset properties are used with similar entities. Furthermore,
namespaces frequency is an indicator of a dataset domain, i.e.,
the more namespaces belonging to a domain, the more relevant
the dataset to that domain. A variety of approaches offer such
computational statistics about RDF datasets [6]–[8]. Despite
this interest, the best of our knowledge, none of the previous
work has introduced a statistical computation framework for
OWL datasets. Most studies have only tended to focus on
triple structure analysis, rather than the axiom structure of the
datasets. OWLStats is the first distributed approach for collect-
ing comprehensive statistics over large-scale OWL datasets.
In order to overcome the memory limitation, distributed in-
memory computing frameworks, e.g., Apache Spark4 or Flink5

can be used. Due to its efficiency in handling large-scale
datasets and scalability, Apache Spark has recently gained
considerable attention. The primary abstraction that Spark is
providing is the Resilient Distributed Dataset (RDD). There
are other advantages of using RDDs, including in-memory
computation, fault tolerance, partitioning, and persistence.

In this paper, we introduce the first software component,
i.e., OWLStats, for comprehensive statistical computations of
large-scale OWL datasets. The main contributions of this work

4https://spark.apache.org/
5https://flink.apache.org/
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can be summarized as follows: 1) We proposed OWLStats
approach for computing 50 different statistical criteria for
OWL dataset, 2) OWLStats - as an open-source implemen-
tation using Apache Spark RDD parallel programming model.
3) We prove that OWLStats is scalable in terms of node
and data scalability. 4) OWLStats has been integrated into
the SANSA6 framework. SANSA is actively maintained and
uses community services, e.g., mailing lists, websites, etc. The
remainder of this paper is organized as follows: the proposed
approach, its architecture, and implementation are described in
Section III. The experimental setup and the discussion of the
obtained results are presented in Section IV. Three use cases
are presented in Section V. Section II gives a brief overview
of the related work. Ultimately, we conclude and the potential
extension of OWLStats in Section VI.

II. RELATED WORK

The last few years have witnessed considerable growth in
the Linked Open Data (LOD) datasets, which can be con-
sumed by software agents. These agents can explore, stream,
recommend, and organize information in intelligent ways to
assist web users. Comprehensive statistics calculation on such
datasets has become a vital factor in describing their internal
structure and coverage. These statistics are increasingly im-
portant in many areas, involving data analysis (e.g., quality
analysis and coverage analysis), query optimization, and data
interlinking and reuse. In this section, we outline the work
related to RDF datasets and OWL ontologies statistics com-
putations. Previous work has tended to focus on calculating
RDF statistics, ignoring to address OWL statistics, especially
when the talk is about large-scale OWL ontologies.

RDF datasets statistics computations. Few researchers have
addressed the problem of calculating RDF statistics. Make-
void7 is a tool, written in Java, that computes statistics about
RDF files, such as the number of triples, classes, and proper-
ties, by running several SPARQL queries using the ARQ query
engine provided in the Apache Jena framework. It generates
statistics in RDF format using voiD vocabulary in order to
make it machine-readable. RDFStat [8] is another framework,
based on the Jena framework, for calculating statistics from
RDF sources, such as documents and SPARQL endpoints. It
can generate statistical data, such as instances count, as well
as histograms for a variety of various data types. Contrary
to make-void, RDFStats can utilize SPARQL endpoints for
querying RDF data and visualizations for its statistics. Further-
more, it does not use VoID for statistics description, but rather
describe them using SCOVO (Statistical Core Vocabulary [9]).
LODStat [6] is an approach, written as a Python module and
uses the Redland library [10], for computing 32 different sta-
tistical criteria, such as typed string length, max per property
and class hierarchy depth, described using VoID. The main
advantage of LODStats, when compared to current approaches,
is its significantly better performance and scalability as well as

6http://sansa-stack.net/
7https://github.com/cygri/make-void

low memory consumption. One of the limitations of LODStat
is that it can operate only on a single triple pattern, i.e., it
does not support, for example, star patterns [11]. Nevertheless,
it provides several schema-level, such as RDFS sub-hierarchy
depth, and data-level statistics, such as counting triples with
literals. LODStats has been integrated with the Comprehensive
Knowledge Archive (CKAN)8 dataset metadata registry in
order to get a general overview of the current state of the
Data on the Web. Concerning distributed processing based
approaches, Böhm et al. [12] developed a scalable approach
that automatically generates voiD (Vocabulary of Interlinked
Datasets) descriptions for large corpora of Linked Data in a
distributed manner. Another distributed in-memory approach
for the computation of large RDF datasets statistics is Dist-
LODStats [7]. DistLODStats extends LODStats by calculating
the same statistical criteria but in a distributed and scalable
manner. DistLODStats is implemented using the Apache Spark
framework and is integrated into SANSA.

III. APPROACH

OWLStats adopted 30 criteria proposed in [6], [7] and added
20 more criteria. In contrast to [7], we perform the statistical
computation on the axiom structure of the OWL datasets. We
carried out the computation in Spark distributed environment
using RDDs (Definition 2). The proposed approach involves
the conversion of the input OWL dataset to RDDs of OWLAx-
ioms. The following definition formalizes the concept of a
statistical criteria [6]:

Definition 1 (Statistical Criterion): A statistical criterion
C is a triple C = (F,D, P ), where: F is a SPARQL filter
condition, D is a derived dataset from the input dataset (RDD
of OWLAxioms) after applying F, and P is a post-processing
filter operating on the data structure D.

F serves as a filter operation, to decide whether an axiom
matches the condition of a specific criterion. The dataset is
processed axiom by axiom, where each axiom examined is
matched against each triple design of each criterion. D is the
result RDD after applying F on the input OWL dataset. In most
cases, the post-processing step is not required. However, P
returns values from the derived dataset D. The post-processing
operation performs further computational steps, such as re-
trieving the top-n elements of D. A formal representation for
each statistical criteria is shown in Table I.

Example (Criteria 29 in Table I). This example illustrates
the statistical criterion average per property, which computes
the entities with their average values in the dataset. Here, the
Criterion name is “Average per property (int, float, time)”, the
Description is “Lists all entities and their average values in the
dataset”, the Filter is “Filter all the data property assertions
and check if the object is literal and of type: int, or float, or
time”, the Action is “Calculate the number of object connected
with each property m1 and the number of properties m2”, and
the Post-Processing is m1/m2.

8http://thedatahub.org/

2

http://sansa-stack.net/
https://github.com/cygri/make-void
http://thedatahub.org/


TABLE I: Statistical criterion defined by Spark rules.

Criterion Rule Filter → Rule Action Postproc.
1. used classes A=Class_Assertion → map(_.getClassExpression) -
2. class usage count A=Class_Assertion →map(_.getClassExpression) .reduceByKey(_+_) take(100)
3. classes defined A=Declaration.isOWLClass → map (_.getEntity.getIRI) -
4. class hierarchy depth A=SubClass_Of G += (a.getSubClass,a.getSuperClass) depth(G)
5. data property usage A=Data_Property_Assertion →map (a => (a.getProperty, 1)).reduceByKey(_+_) take(100)

6. object property usage A=Object_Property_Assertion
→map (a => (a.getProperty, 1))
.reduceByKey(_+_) take(100)

7. property usage distinct per subj. → groupBy(_.getSubject).reduceByKey(_+_) count()
8. property usage distinct per obj. → groupBy(_.getObject).reduceByKey(_+_) count()
9. properties distinct per subj. → groupBy(_.getSubject).combineByKey(_+_) sum/count
10. properties distinct per obj. → groupBy(_.getObject).combineByKey(_+_) sum/count

11. outdegree
→map(_.getSubject).map(a => (a, 1))
.combineByKey(_+_) sum/count

12. indegree
→map(_.getObject).map(a => (a, 1))
.combineByKey(_+_) sum/count

13. data Property hierarchy depth A=Sub_Data_Property_Of G += (a.getSubProperty, a.getSuperProperty) depth(G)
14. object Property hierarchy depth A=Sub_Object_Property_Of G += (a.getSubProperty, a.getSuperProperty) depth(G)
15. subclass usage A=SubClass_Of →count() -
16. axioms →count() -

17. entities mentioned →map(a => a.getSubject.isNamed
&& a.getObject.isNamed).count() -

18. distinct entities →map(a => a.getSubject.isNamed
&& a.getObject.isNamed).distinct() -

19. literals A=Data_Proeprty_Assertion
&& obj.isLiteral

→count() -

20. datatypes A=Data_Proeprty_Assertion
&& obj.isLiteral

→ map (a => (o.getDatatype, 1))
.reduceByKey(_+_) -

21. languages A=Data_Proeprty_Assertion
&& obj.isLiteral

→map (a => (o.getLang, 1))
.reduceByKey(_+_) -

22. average typed string length
A=Data_Proeprty_Assertion
&& obj.isLiteral &&
obj.getDatatype = XSD_STRING

→count()
len+=o.length len/count

23. average untyped string length
A=Data_Proeprty_Assertion
&& obj.isLiteral &&
!obj.getDatatype.isEmpty()

→count()
len+=o.length len/count

24. typed subject A=Axiom_TYPES &&
p=RDF_TYPE

→count() -

25. labeled subject A=Annotation_Assertion
&& a.getProperty.isLabel

→count() -

26. sameAs A=SAME_INDIVIDUAL →count() -

27. links A=Axiom_TYPES &&
s.getNS != o.getNS

→map (a => ((s.getNS, o.getNS), 1))
.reduceByKey(_+_)

-

28. max per property {int,float,time}
A=Data_Proeprty_Assertion &&
o.isLiteral&& o.getDatatype =
isInt | isFloat | isDateTime

→map (_.getProperty, _.getObject)
.reduceByKey(_ max _)

-

29. avg per property {int,float,time}
A=Data_Proeprty_Assertion &&
o.isLiteral&& o.getDatatype =
isInt | isFloat | isDateTime

→m1 => map(_.getObject).count()
m2 => map(_.getProperty).count()

m1/m2

30. subj. vocabularies →map (a => (a.getsubject.getNS, 1))
.reduceByKey(_+_)

-

31. pred.. vocabularies →map (a => (a.getProperty.getNS, 1))
.reduceByKey(_+_)

-

32. obj. vocabularies →map (a => (a.getObject.getNS, 1))
.reduceByKey(_+_)

-

33. subdata property usage A=Sub_Data_Property →count() -
34. subobject property usage A=Sub_Object_Property →count() -
35. subannotation property usage A=Sub_Annotation_Property →count() -

36. classes count →flatMap(a => a.classesInSignature)
.count()

-

37. data properties count →flatMap(a => a.dataProperties
InSignature).count()

-

38. object properties count →flatMap(a => a.objectProperties
InSignature).count()

-

39. class assertion count A=Class_Assertion →count() -
40. data property assertion count A=Data_Property_Assertion →count() -
41. object property assertion count A=Object_Property_Assertion →count() -
42. annotation property assertion count A=Annotation_Property_Assertion →count() -
43. different individuals A=Different_Individuals →count() -

44. object intersection A=Equivalent_Classes &&
Type=Object_Intersection_Of

→map(_.getOperandsAsList.get(1)) count()

45. object union A=Equivalent_Classes &&
Type=Object_Union_Of

→map(_.getOperandsAsList.get(1)) count()

46. object complement A=Equivalent_Classes &&
Type=Object_Complement_Of

→map(_.getOperandsAsList.get(1)) count()

47. data SomeValuesFrom A=Equivalent_Classes &&
Type=Data_Some_Values_From

→map(_.getOperandsAsList.get(1)) count()

48. data AllValuesFrom A=Equivalent_Classes &&
Type=Data_All_Values_From

→map(_.getOperandsAsList.get(1)) count()

49. data Cardinality
A=Equivalent_Classes &&
Type=Data_Min_Cardinality ||
Type=Data_Max_Cardinality

→map(_.getOperandsAsList.get(1)) count()

50. data HasValue A=Equivalent_Classes &&
Type=Data_Has_Value

→map(_.getOperandsAsList.get(1)) count()
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Fig. 1: OWLStats Architecture.

Definition 2 (RDD Operations): All the statistical crite-
ria implemented using the following operations: map, filter,
reduceByKey, groupBy, and combineByKey. All RDD opera-
tions are documented in RDD Programming Guide9. A brief
formalization for each operation is given as follows:

• map: The map function iterates over every line in RDD and
converts it into new RDD based on a specific function.

• flatMap: flatMap is similar to map operation, except that
map return one element, while flatMap return a list of
elements based on a specific function.

• filter: New RDD returned containing only the elements that
match a certain condition.

• reduceByKey: The input RDD for reduceByKey operation is
a key-value (K, V) pairs, the pairs on the same machine
with the same key are combined before the data is shuffled.

• groupBy: The input RDD is a key-value (K, V) pairs, returns
a new RDD of (K, Iterable<V>) pairs after applying a
grouping function (e.g., average, count) over the input RDD.

A. OWLStats Architecture

Figure 1 illustrates the main workflow of the statistical com-
putation proposed by OWLStats. OWLStats approach consists
of three main steps: 1) Storing the OWL dataset into a scalable
distributed storage, 2) converting the input dataset into the
main data structure (i.e. RDD[OWLAxiom]), 3) Compute the
statistical criteria evaluation and generating the results.

9https://spark.apache.org/docs/latest/rdd-programming-guide.html

Step 1: Storing the OWL dataset. To read the OWL dataset
efficiently, Spark needs the dataset to be stored in a large-
scale storage system. The Hadoop Distributed File-System
(HDFS) [13] is used for data storage. HDFS is designed to
store and stream large datasets for user applications efficiently.
HDFS splits the data into separate blocks when the data
is loaded into HDFS, then it replicates and distributes the
blocks to various nodes in a cluster, allowing highly efficient
parallel processing and fault-tolerance. Consequently, the node
information that crash can be found in a cluster elsewhere.

Step 2: Dataset conversion. To convert the input OWL
dataset, we used SANSA-OWL10 layer for the conversion.
SANSA-OWL layer supports the conversion for three input
formats: Functional, Manchester, and OWL/XML. The output
of this step is RDD[OWLAxiom].

Step 3: Statistical criteria evaluation. For each criterion,
we start an execution plan to filter the input dataset and
calculate the output. Spark transformations, i.e., map, filter,
groupBy, reduceByKey., perform the calculations. Computing
phase output would be the statistical results expressed in a
human-readable format e.g. VoID. VoID11 is an RDF Schema
vocabulary to represent metadata about RDF datasets.

B. Implementation

This section explains the implementation of OWLStats
framework. All phases of the OWLStats have been imple-
mented using Apache Spark. Scala12 programming language

10https://github.com/SANSA-Stack/SANSA-OWL
11https://www.w3.org/TR/void/
12https://www.scala-lang.org/
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API has been used to provide a distributed implementation of
the proposed approach. Algorithm 1 establishes the primary
dataset from an OWL file (as constructed from line 2). The
algorithm takes as input: the OWL dataset, the syntax of
the OWL dataset (we support Functional, Manchester and
OWL/XML syntax), and the list of the statistical criteria.
Line 2 converts the input OWL file into RDD[OWLAxiom].
Afterwards, for each criterion defined inside OWLStats, the
algorithm computes them using the filter, action, and post-
processing operations (lines 5, 7, and 9). Every transformed
RDD can be recalculated by default each time running an
action on it. Nevertheless, an RDD could be persisted in
memory for quicker access next time needed it instead of
reconstructing the RDD. Spark caching techniques, persist or
cache actions, can be used for faster access to RDD elements.
In the OWLStats algorithm, caching is used twice to persist
RDD elements in memory. In line 3, the OWLAxioms RDD
to be used for each criterion is cached. Afterward, caching
the derived RDD after applying the criterion filter condition
on the input dataset (line 6).

Algorithm 1: OWLStats computation over set of sta-
tistical criteria

Input: spark: Spark Session,
input: The OWL dataset,
syntax: Syntax type (func, manch, owlxml),
CL: List of criterion

1 begin
2 RDD axioms = input.convert(spark, syntax)
3 axioms.cache()
4 foreach c ∈ CL do
5 rdd ← c.filter(axioms)
6 rdd.cache()
7 rdd ← c.action(rdd)
8 if c.hasPostProc. then
9 rdd ← c.postProc(rdd)

10 end
11 end

Algorithm 2 describes the filter, action, and post pro-
cessing operations for Criterion 2 listed in Table I.
Function filter() extracts all the Class_Assertion ax-
ioms from the input OWLAxioms RDD and then con-
vert it to RDD[OWLClassAssertionAxioms] instead of
RDD[OWLAxiom] (lines 3-4), then get all the class expres-
sions within the OWLClassAssertionAxioms (line 5).
Afterwards, action() function is applied to calculate the fre-
quency of each OWLClassExpression (lines 8-9). Finally,
postProc() function is called to sort the calculated action()
and return the first 100 OWLClassExpression with their
corresponding frequencies (line 12).

IV. EVALUATION

In this section, we describe the evaluation of OWLStats.
We are aiming to address the following questions concerning

Algorithm 2: Classes usage count criterion
Input : axioms: rdd of the converted OWL dataset
Output: result: first 100 Classes and there usage frequency

1 begin
2 Function filter():RDD[OWLClassExpression]
3 val f = extractAxioms(axioms,

AxiomType.CLASS_ASSERTION)
4

.asInstanceOf[RDD[OWLClassAssertionAxiom]]
5 .map(_.getClassExpression)
6 return f
7 Function action():RDD[(OWLClassExpression,

Int)]
8 val a = filter().map(e => (e, 1))
9 .reduceByKey(_ + _)

10 return a
11 Function postProc():RDD[(OWLClassExpression,

Int)]
12 val p = action().sortBy(_._2, false).take(100)
13 return p
14 end

scalability and flexibility: Q1) How does OWLStats scale to
larger datasets? Q2) How is the speedup ration affected with
respect to change the number of worker nodes? Q3) How
does OWLStats process different datasets sizes? Q4) How
fast is OWLStats in computing the introduced computational
statistics? We start with the experimental setup, afterward
present the results and then discuss details.

A. Experimental Setup

System configuration. All distributed experiments ran on a
cluster with five nodes. Among these nodes, one is reserved to
act as the master and four nodes used as computing workers.
Each node has AMD Opteron 2.3 GHz processors (64 Cores),
250.9 GB memory, and the configured capacity is 1.7 TB. The
nodes are connected with 1 Gb/s Ethernet. Also, Spark v2.4.4
and Hadoop v2.8.1 with Java 1.8.0 is installed on this cluster.
Local-mode experiments are all carried out on a single cluster
instance. All distributed experiments run three times, and the
results indicate average execution time.

Benchmark. Lehigh University (LUBM) [14] synthetic
benchmark has been used for the experiment. For the evalua-
tion of Semantic Web repositories, LUBM is a commonly used
benchmark for evaluating the efficiency of such repositories
regarding extensional queries over a large dataset. LUBM
generator generates many A-Box axioms but no T-Box axioms.
We use the LUBM data generator in our experiment to gen-
erate five datasets of different sizes: LUBM-50, LUBM-200,
LUBM-500, LUBM-1000, and LUBM-2000. The numbers
attached to the benchmark name is the number of generated
universities. Properties of the generated datasets, loading time
to the HDFS, and the number of axioms of each dataset are
listed in Table II. To create larger datasets from the ontology
files created from the LUBM benchmark, we implemented a
merge tool.

5



B. Results and Discussion

We evaluate our approach using the aforementioned datasets
to study its performance as well as scalability. In this evalua-
tion, we measure the scalability of OWLStats based on node
and data scalability. We conducted two types of experiments.
First, we evaluate the execution time of our distributed ap-
proach with different data sizes (Experiment 1). Second, by
increasing worker nodes (machines) in the cluster, we evaluate
the horizontal scalability (Experiment 2). Figure 2 and Figure
4 reports the results of efficiency analysis for data and node
scalability, respectively.

Experiment 1 (Data Scalability). In this experiment, we
measure the efficiency of OWLStats by increasing the size
of the input dataset. We retain a constant number of nodes
(workers) at five in the cluster and increase the size of datasets
to assess whether the proposed approach can handle larger
datasets. To test the data scalability for OWLStats, we run the
experiments on the LUBM benchmark on five different sizes.
We begin by generating a dataset of 50 universities (LUBM-
50), then we iteratively increase the number of universities
(i.e., scaling up the size). Figure 2 displays the run time of the
proposed distributed algorithm with and without caching for
each dataset. Caching is a mechanism to speed up applications
that have multiple access to the same RDD, which keeps the
data in memory and accelerates the computations. It is appar-
ent from Figure 2, the reduction in execution time between
OWLStats with caching (blue columns) and without caching
(red columns). The x-axis represents the LUBM datasets
produced with an increase in the number of universities, while
the y-axis represents the execution time within minutes. For
example, calculating the 50 statistics criteria with LUBM-2000
costs around 31 minutes without using the caching mechanism,
while the time after caching was triggered, decreased to 24
minutes. Spark has the performance advantage of using in-
memory data storage. The use of data storage in memory
contributes to a decrease in the average time spent on net-
work communication and data read/write using disk-based
approaches It is evident that the execution time increases
linearly as the size of the dataset increases. The results
show that our algorithm can be scaled according to dataset
size, which answers Q1 and Q3. Figure 3 shows the output
obtained from running OWLStats in a multi-machine (five-
machine) cluster environment. For more illustrations, consider
the LUBM-1000 dataset; the execution time decreased from
48.83 minutes in a single machine environment (local) down
to 19.67 minutes in multiple machines environment (cluster).

TABLE II: LUBM benchmark datasets (functional syntax)

Dataset Size (GB) Load Time (m) #Axioms
LUBM-50 1.3 8 6,654,756
LUBM-200 4.8 23 31,178,382
LUBM-500 10.5 82 77,577,078
LUBM-1000 20.3 126 151,066,104
LUBM-2000 41.2 230 306,002,524
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Fig. 2: OWLStats sizeup performance evaluation
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Fig. 3: OWLStats speedup performance evaluation in cluster
and local environments.

The observed time decrease can be interpreted as a result of
multiple machine distribution of the computation. For LUBM-
1000, the use of cluster mode speeds up performance by two
times, which addresses Q2.

Experiment 2 (Node Scalability). In this experiment, we
increase the number of cluster workers in order to measure
the node scalability. We have increased the number of workers
from one to four (with one step each time). Figure 4 shows
LUBM-200’s speedup efficiency by raising the number of
worker nodes from one to five. The execution time decreased
around three times (from 26.3 min to 8.2 min). It is evident
that as the number of workers increases, the execution time
decreases linearly. The speedup ratio (S) is an essential metric
for calculating the parallel algorithms (addressing Q4). The
speedup ratio is the ratio S = TL/TN , where TL is the
execution time of the algorithm in local mode, and TN is the
time on N workers. Efficiency E measures the speedup per
worker. It is the time taken to run the algorithm in local mode
against the time on N workers, E = S/N . Figure 5 illustrates
the speedup and efficiency ratios for the LUBM-200 dataset.
The speedup for the selected data is increased sequentially
with respect to the number of workers. In conclusion, the
findings illustrate that OWLStats would achieve near-linear
scalability of output in the sense of speedup.
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Criteria Execution. The overall execution time of OWLStats
per each criterion is illustrated in Figure 6. The runtime for
each criterion is reported for both LUBM-50 and LUBM-
200 datasets. OWLStats consists of 50 statistical criteria;
each criterion execution time depends on the number of the
input OWLAxiom. The findings obtained from both datasets’
execution show that runtime is less when there is no data
shuffle inside the cluster. Criteria 25, requires less execution
time since it relies on OWLAnnotationAssertions of
type owl:literal and the number of annotation assertions
in LUBM benchmark not too much. The longest execution
time is taken by Criteria 17. The reason refers to that even
though it requires no data shuffling, but no filter applied to the
input data; therefore, the whole dataset is processed to evaluate
the criteria. LUBM benchmark generates many A-box axioms
(i.e., assertions) but no T-Box axioms; thus, criteria from 33 to
43 consume long execution time because they are all evaluated
on assertion axioms. Criteria 30, 31, and 32 concerning the
vocabularies used in the dataset are considered efficient since
there is no data movement among the cluster nodes. Criteria
44 to 50 were not evaluated because the LUBM benchmark
contains only six OWLEquivalentClasses such that those
consume almost no time. Overall, the experiments led us to
conclude that OWLStats can complete statistical computation
execution in a reasonable time, proving that OWLStats dis-

tributed statistical criteria computation is scalable.

To evaluate OWLStats over more complex ontologies (i.e.,
ontologies with more T-Box axioms), we use it over Gene
Ontology (GO)13. GO is considered as the leading source of
gene information. It consists of 601,235 axioms. OWLStats
computes all the criteria within 326 seconds on a cluster of five
worker nodes. Furthermore, we evaluate OWLStats over the
University Ontology Benchmark (UOBM)14, which generates
more complex and realistic datasets. We generate a dataset
with ten universities (maximum number of universities offered
by the benchmark), which contains 1,475,83 axioms. Within
195 seconds, OWLStats measures all statistical criteria on a
cluster of five worker nodes.

V. USE CASES

OWLStats is a generic software component for computing
statistical information about large-scale OWL datasets. In this
section, we present three use cases for our proposed approach.

SANSA-Stack: OWLStats has been successfully inte-
grated into Scalable Semantic Analytics Stack (SANSA-Stack)
framework [15], [16]. SANSA is an open source15 large-
scale processing engine for efficient processing of large-scale
RDF datasets. The need for utilizing fault-tolerant big data
frameworks such as Apache Spark and Flink is raised, to
process this massive amount of data efficiently. SANSA is
built on top of Spark, offering a set of facilities for the
representation (RDF and OWL), querying and inference of
semantic data. Currently, SANSA-RDF16 layer supports 32
statistical criteria for RDF datasets. Some of the machine
learning algorithms in the inference and machine learning
layers are built on top axioms level. Therefore, we integrated
OWLStats into the SANSA framework to support the SANSA-
OWL layer to compute 50 statistical criteria based on OWL
datasets (Functional, Manchester, and OWL/XML formats).

PLATOON Project17: PLATOON is an EU-funded H2020
project that digitizes the energy sector with the adoption of
AI techniques. The objective is to increase renewable energy
consumption, smart grids management, and energy efficiency.
PLATOON reference architecture is used to construct and
deploy scalable and replicable energy management solutions.
OWLStats will be used in PLATOON to collect statistical
information to assist in the development of prediction algo-
rithms.

ABSTAT: ABSTAT [17] is a summarization framework to
support linked set understanding. ABSTATS18 framework can
provide compact as well as concise summaries for a given
dataset. To derive summarization for more input datasets of
OWL formats, OWLStats will be used.

13http://geneontology.org/
14https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/
15https://github.com/SANSA-Stack
16https://github.com/SANSA-Stack/SANSA-RDF
17https://platoon-project.eu/
18http://abstat.disco.unimib.it/
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VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel approach OWLStats, to
evaluate 50 statistical criteria for OWL datasets. OWLStats
is an open-source distributed framework for computing com-
prehensive statistics over OWL datasets. Interestingly, after
reviewing the literature, we found no tool which could calcu-
late such statistics. In conclusion, the evaluation of OWLStats
achieved near-linear scalability of output in the sense of
speedup. OWLStats has been successfully integrated into the
SANSA framework. We carried out two experiments to test
OWLStats’s efficiency as well as the data and node scalability.
To further our research, we are planning to add more criteria
that cover further OWL axioms structures. Moreover, we aim
to introduce further improvements in terms of code optimiza-
tion, such as using different persisting strategies and using
Alluxio19 to bridge the gap between application and storage
system.
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