
The Tale of Sansa Spark

Ivan Ermilov3, Jens Lehmann1,2, Gezim Sejdiu1, Lorenz Bühmann3, Patrick Westphal3,
Claus Stadler3, Simon Bin3, Nilesh Chakraborty1, Henning Petzka2, Muhammad

Saleem3,4, Axel-Cyrille Ngonga Ngomo3,4, and Hajira Jabeen1

1 University of Bonn, Germany
{jens.lehmann, sejdiu, chakrabo, jabeen}@cs.uni-bonn.de

2 Fraunhofer IAIS, Bonn, Germany
{jens.lehmann, henning.petzka}@iais.fraunhofer.de

3 Institute for Applied Informatics (InfAI), University of Leipzig, Germany
{buehmann,patrick.westphal,cstadler,iermilov,sbin,saleem}@informatik.uni-leipzig.de

4 Paderborn University, Data Science Group, Paderborn, Germany
axel.ngonga@uni-paderborn.de

Abstract. We demonstrate the open-source Semantic Analytics Stack (SANSA),
which can perform scalable analysis of large-scale knowledge graphs to facilitate
applications such as link prediction, knowledge base completion and reasoning.
The motivation behind this work lies in the lack of scalable methods for analytics
which exploit expressive structures underlying semantically structured knowledge
bases. The demonstration is based on the BigDataEurope technical platform, which
utilizes Docker technology. We present various examples of using SANSA in the
form of interactive Spark notebooks, which are executed with Apache Zeppelin.
The technical platform and the notebooks are available on SANSA Github and can
be deployed on any Docker-enabled host, locally or in a Docker Swarm cluster.

1 Introduction

SANSA5 is an open-source6 structured data processing engine for performing distributed
computation over large-scale RDF datasets [1]. It provides data distribution, scalability
and fault tolerance for (1) manipulating large RDF datasets, and (2) applying analytics
on the data at scale by making use of cluster-based big data processing engines. In this
demonstration paper, we describe a web-based prototype for interacting with SANSA
via a web interface.7 SANSA comes with: (i) specialised serialisation mechanisms
and partitioning schemata for RDF, using vertical partitioning strategies, (ii) a scalable
query engine for large RDF datasets and different distributed representation formats
for RDF, (iii) an adaptive reasoning engine which derives an efficient execution and
evaluation plan from a given set of inference rules, (iv) several distributed structured
machine learning algorithms that can be applied on large-scale RDF data, and (v) a
framework with a unified API that aims to combine distributed in-memory computation
technology with semantic technologies. To achieve the goal of storing and manipulating

5
http://sansa-stack.net/

6
https://github.com/SANSA-Stack

7 Please note that any similarities of the paper title to popular TV series are purely coincidental.

http://sansa-stack.net/
https://github.com/SANSA-Stack


large RDF datasets, SANSA leverages existing big data frameworks like Apache Spark
and Apache Flink,8 which have matured over the years and offer a reliable method for
general-purpose processing of large-scale data.

In this demonstration, we will present and describe our implementation of interactive
Spark Notebooks for SANSA.9 These notebooks are a collaborative environment imple-
mented as an interactive web editor. They allow access to the SANSA layers and hence
provide data scientists, data engineers and students with means to easily use and execute
the functionality of SANSA to explore, analyze and learn from large-scale RDF datasets.

2 The SANSA Stack

Research efforts in the areas of distributed analytics and semantic technologies have
been mostly isolated until now. We aim to proceed one step further by using the semantic
modelling standard as a basis for machine learning and data analytics. The layered
architecture of SANSA is a direct consequence of this integrated vision and is depicted
at the top of Figure 1. For a detailed description of each layer, we refer to [1].

Distributed Filesystem

In-Memory Computing Framework

Machine Learning Libraries

Semantic 
Technology 

Stack

powerful data integration
expressive modelling
W3C standardised formats
benefits only indirectly measurable
usually no horizontal scalability

Distributed 
Machine Learning

manual data integration
often simple input formats
data formats often not standardised
measurable benefits
horizontal scalability

Scalable Semantic Analytics Stack (SANSA)

Distributed In-Memory Processing 

Knowledge Distribution & Representation

} Analytics

Querying

Inference

Machine Learning

} Distri-
bution

1
2
3
4
5

Distributed Data Sets / Streams

Fig. 1. The SANSA framework combines distributed analytics (left) and semantic technologies
(right) into a scalable semantic analytics stack (top). The colours encode how the original stacks
influence the SANSA stack. A main vision of SANSA is the belief that the the characteristics
of each technology stack (bottom) can be combined and retain the respective advantages (figure
taken from [1]).

8
http://spark.apache.org and http://flink.apache.org

9
https://github.com/SANSA-Stack/SANSA-Notebooks

http://spark.apache.org
http://flink.apache.org
https://github.com/SANSA-Stack/SANSA-Notebooks


Hadoop

Spark

Apache Zeppelin

RDF Query Inference OWL ML

exchange data

submit
notebook

Hue GUI

filebrowser

upload
download Docker container

Spark SANSA notebook

Fig. 2. SANSA-Notebooks architecture.

3 SANSA Notebooks

SANSA provides Notebooks for an easy local deployment for development and demon-
stration purposes. SANSA-Notebooks is an interactive toolkit on top of Hadoop-Spark-
Workbench10 with Apache Zeppelin,11 which allows the copying of files from/to HDFS
and an interactive Spark code execution via a web GUI. The architecture of SANSA-
Notebooks is depicted in Figure 2. The authors utilize SANSA-Notebooks (see Fig-
ure 3) in Big Data labs and courses as they alleviate the complicated Hadoop/Spark
setup and allow the students to focus on developing distributed algorithms on top of
SANSA. Cluster deployment of the examples is also possible through Docker images
(see SANSA-Examples Github repository12). Additionally, SANSA is readily available
from the Maven Central Repository. Thus it is straightforward to include it in other
projects using Maven or SBT – the most popular build managers for Scala – for both
Spark- and Flink-based setups.

During the demonstration, we will present the example notebooks.13 These examples
give a quick overview of the SANSA APIs. SANSA is build on the concepts of distributed
datasets (i.e RDD, DataFrame, DataSet). A dataset is inferred from the external data,
then parallel operations e.g. transformations and actions are applied which trigger a job
execution on a cluster. Depending on the network connection, the demonstration will be
performed on a local single node cluster or a remote multi node cluster. In the following,
we provide a concise description for the examples grouped by the SANSA layers.

1. RDF.
(a) Reading and writing triple files from HDFS or file system and some basic triple

operations.
(b) A distributed evaluation of numerous RDF Dataset Statistics dubbed RDF-Stats

(see Figure 3), for example, property distribution, class distribution, distinct
subjects/objects/entities as well as statistics summary.

(c) Assigning weights to a given entity based on the Spark GraphX PageRank algo-
rithm after triples have been transformed to a graph representation (i.e. PageRank
for resources).

10
https://github.com/big-data-europe/docker-hadoop-spark-workbench

11
https://zeppelin.apache.org/

12
https://github.com/SANSA-Stack/SANSA-Examples

13 The source code for all of them is provided at https://github.com/SANSA-Stack/SANSA-Examples. We
will present a tale / storyline using different examples across the SANSA layers for booth visitors and adapt them interac-
tively (with new parameters, other datasets etc.) in the web browser.

https://github.com/big-data-europe/docker-hadoop-spark-workbench
https://zeppelin.apache.org/
https://github.com/SANSA-Stack/SANSA-Examples
https://github.com/SANSA-Stack/SANSA-Examples


Fig. 3. RDF-Stats Spark application running in SANSA-Notebooks with statistics visualization.

2. Query. The example applies Sparqlify,14 which is a SPARQL-to-SQL rewriter,
for data partitioning and schema extraction. The queries are executed using the
SparkSQL engine.

3. RDF inference. The examples apply a reasoning profile (RDFS Full, RDFS Simple,
OWL Horst, Transitive) on a given input file with an optimised execution plan.

4. OWL. The examples provided for the OWL layer demonstrate the process of loading
an OWL file into Spark RDD, a Spark Dataset, or a Flink DataSet.

5. Machine Learning.
(a) Clustering algorithms. Three examples for different clustering algorithms are

provided, namely power iteration clustering, BorderFlow and modularity clus-
tering. They all take an RDF graph as input and return the list of triples for each
of the different clusters.

(b) Rule mining. This example applies association rule mining on a given RDF
knowledge base. The output is the set of closed Horn rules that satisfy a support-
confidence threshold.

One of the powerful features of the SANSA Notebooks is that you can view the
result set of the previous session within the Spark framework and, in case you have
found some insight for your data and would like to share, you can easily create a report
and either print or send it.

References

1. J. Lehmann, G. Sejdiu, L. Bühmann, P. Westphal, C. Stadler, I. Ermilov, S. Bin, N. Chakraborty,
M. Saleem, A.-C. Ngonga Ngomo, and H. Jabeen. Distributed Semantic Analytics using the
SANSA Stack. In Proceedings of 16th International Semantic Web Conference - Resources
Track (ISWC’2017), 2017.

14
http://aksw.org/Projects/Sparqlify.html

http://aksw.org/Projects/Sparqlify.html

	The Tale of Sansa Spark

